# HG changeset patch # User wenzelm # Date 1377796835 -7200 # Node ID 9d6e263fa921c45db0999383121f5ccab8566683 # Parent 251e1a2aa792920f9aca700a0bc572f678b4ef79 tuned proofs; diff -r 251e1a2aa792 -r 9d6e263fa921 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 15:53:56 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Aug 29 19:20:35 2013 +0200 @@ -30,7 +30,7 @@ lemmas real_isGlb_unique = isGlb_unique[where 'a=real] -lemma countable_PiE: +lemma countable_PiE: "finite I \ (\i. i \ I \ countable (F i)) \ countable (PiE I F)" by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq) @@ -77,45 +77,48 @@ proof safe fix O' and x::'a assume H: "topological_basis B" "open O'" "x \ O'" - hence "(\B'\B. \B' = O')" by (simp add: topological_basis_def) + then have "(\B'\B. \B' = O')" by (simp add: topological_basis_def) then obtain B' where "B' \ B" "O' = \B'" by auto - thus "\B'\B. x \ B' \ B' \ O'" using H by auto + then show "\B'\B. x \ B' \ B' \ O'" using H by auto next assume H: ?rhs - show "topological_basis B" using assms unfolding topological_basis_def + show "topological_basis B" + using assms unfolding topological_basis_def proof safe - fix O'::"'a set" assume "open O'" + fix O'::"'a set" + assume "open O'" with H obtain f where "\x\O'. f x \ B \ x \ f x \ f x \ O'" by (force intro: bchoice simp: Bex_def) - thus "\B'\B. \B' = O'" + then show "\B'\B. \B' = O'" by (auto intro: exI[where x="{f x |x. x \ O'}"]) qed qed lemma topological_basisI: assumes "\B'. B' \ B \ open B'" - assumes "\O' x. open O' \ x \ O' \ \B'\B. x \ B' \ B' \ O'" + and "\O' x. open O' \ x \ O' \ \B'\B. x \ B' \ B' \ O'" shows "topological_basis B" using assms by (subst topological_basis_iff) auto lemma topological_basisE: fixes O' assumes "topological_basis B" - assumes "open O'" - assumes "x \ O'" + and "open O'" + and "x \ O'" obtains B' where "B' \ B" "x \ B'" "B' \ O'" proof atomize_elim - from assms have "\B'. B'\B \ open B'" by (simp add: topological_basis_def) + from assms have "\B'. B'\B \ open B'" + by (simp add: topological_basis_def) with topological_basis_iff assms - show "\B'. B' \ B \ x \ B' \ B' \ O'" using assms by (simp add: Bex_def) + show "\B'. B' \ B \ x \ B' \ B' \ O'" + using assms by (simp add: Bex_def) qed lemma topological_basis_open: assumes "topological_basis B" - assumes "X \ B" + and "X \ B" shows "open X" - using assms - by (simp add: topological_basis_def) + using assms by (simp add: topological_basis_def) lemma topological_basis_imp_subbasis: assumes B: "topological_basis B" @@ -179,7 +182,7 @@ locale countable_basis = fixes B::"'a::topological_space set set" assumes is_basis: "topological_basis B" - assumes countable_basis: "countable B" + and countable_basis: "countable B" begin lemma open_countable_basis_ex: @@ -275,7 +278,8 @@ fix x :: "'a \ 'b" from first_countable_basisE[of "fst x"] guess A :: "'a set set" . note A = this from first_countable_basisE[of "snd x"] guess B :: "'b set set" . note B = this - show "\A::nat \ ('a \ 'b) set. (\i. x \ A i \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" + show "\A::nat \ ('a \ 'b) set. + (\i. x \ A i \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" proof (rule first_countableI[of "(\(a, b). a \ b) ` (A \ B)"], safe) fix a b assume x: "a \ A" "b \ B" @@ -293,7 +297,8 @@ qed class second_countable_topology = topological_space + - assumes ex_countable_subbasis: "\B::'a::topological_space set set. countable B \ open = generate_topology B" + assumes ex_countable_subbasis: + "\B::'a::topological_space set set. countable B \ open = generate_topology B" begin lemma ex_countable_basis: "\B::'a set set. countable B \ topological_basis B" @@ -337,7 +342,7 @@ unfolding subset_image_iff by blast } then show "topological_basis ?B" unfolding topological_space_class.topological_basis_def - by (safe intro!: topological_space_class.open_Inter) + by (safe intro!: topological_space_class.open_Inter) (simp_all add: B generate_topology.Basis subset_eq) qed qed @@ -368,7 +373,8 @@ then have B: "countable B" "topological_basis B" using countable_basis is_basis by (auto simp: countable_basis is_basis) - then show "\A::nat \ 'a set. (\i. x \ A i \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" + then show "\A::nat \ 'a set. + (\i. x \ A i \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" by (intro first_countableI[of "{b\B. x \ b}"]) (fastforce simp: topological_space_class.topological_basis_def)+ qed @@ -418,11 +424,11 @@ lemma openin_clauses: fixes U :: "'a topology" - shows "openin U {}" - "\S T. openin U S \ openin U T \ openin U (S\T)" - "\K. (\S \ K. openin U S) \ openin U (\K)" - using openin[of U] unfolding istopology_def mem_Collect_eq - by fast+ + shows + "openin U {}" + "\S T. openin U S \ openin U T \ openin U (S\T)" + "\K. (\S \ K. openin U S) \ openin U (\K)" + using openin[of U] unfolding istopology_def mem_Collect_eq by fast+ lemma openin_subset[intro]: "openin U S \ S \ topspace U" unfolding topspace_def by blast @@ -502,7 +508,8 @@ proof - have "S - T = S \ (topspace U - T)" using openin_subset[of U S] oS cT by (auto simp add: topspace_def openin_subset) - then show ?thesis using oS cT by (auto simp add: closedin_def) + then show ?thesis using oS cT + by (auto simp add: closedin_def) qed lemma closedin_diff[intro]: @@ -511,8 +518,7 @@ shows "closedin U (S - T)" proof - have "S - T = S \ (topspace U - T)" - using closedin_subset[of U S] oS cT - by (auto simp add: topspace_def) + using closedin_subset[of U S] oS cT by (auto simp add: topspace_def) then show ?thesis using oS cT by (auto simp add: openin_closedin_eq) qed @@ -537,7 +543,8 @@ } moreover { - fix K assume K: "K \ Collect ?L" + fix K + assume K: "K \ Collect ?L" have th0: "Collect ?L = (\S. S \ V) ` Collect (openin U)" apply (rule set_eqI) apply (simp add: Ball_def image_iff) @@ -663,7 +670,8 @@ lemma closedin_closed_Int: "closed S ==> closedin (subtopology euclidean U) (U \ S)" by (metis closedin_closed) -lemma closed_closedin_trans: "closed S \ closed T \ T \ S \ closedin (subtopology euclidean S) T" +lemma closed_closedin_trans: + "closed S \ closed T \ T \ S \ closedin (subtopology euclidean S) T" apply (subgoal_tac "S \ T = T" ) apply auto apply (frule closedin_closed_Int[of T S]) @@ -680,7 +688,8 @@ (is "?lhs \ ?rhs") proof assume ?lhs - then show ?rhs unfolding openin_open open_dist by blast + then show ?rhs + unfolding openin_open open_dist by blast next def T \ "{x. \a\S. \d>0. (\y\U. dist y a < d \ y \ S) \ dist x a < d}" have 1: "\x\T. \e>0. \y. dist y x < e \ y \ T" @@ -692,7 +701,7 @@ apply (rule_tac x=d in exI, clarify) apply (erule le_less_trans [OF dist_triangle]) done - assume ?rhs hence 2: "S = U \ T" + assume ?rhs then have 2: "S = U \ T" unfolding T_def apply auto apply (drule (1) bspec, erule rev_bexI) @@ -754,10 +763,10 @@ lemma ball_subset_cball[simp,intro]: "ball x e \ cball x e" by (simp add: subset_eq) -lemma subset_ball[intro]: "d <= e ==> ball x d \ ball x e" +lemma subset_ball[intro]: "d \ e \ ball x d \ ball x e" by (simp add: subset_eq) -lemma subset_cball[intro]: "d <= e ==> cball x d \ cball x e" +lemma subset_cball[intro]: "d \ e \ cball x d \ cball x e" by (simp add: subset_eq) lemma ball_max_Un: "ball a (max r s) = ball a r \ ball a s" @@ -796,7 +805,7 @@ unfolding open_dist subset_eq mem_ball Ball_def dist_commute .. lemma openE[elim?]: - assumes "open S" "x\S" + assumes "open S" "x\S" obtains e where "e>0" "ball x e \ S" using assms unfolding open_contains_ball by auto @@ -876,7 +885,7 @@ lemma open_UNION_box: fixes M :: "'a\euclidean_space set" - assumes "open M" + assumes "open M" defines "a' \ \f :: 'a \ real \ real. (\(i::'a)\Basis. fst (f i) *\<^sub>R i)" defines "b' \ \f :: 'a \ real \ real. (\(i::'a)\Basis. snd (f i) *\<^sub>R i)" defines "I \ {f\Basis \\<^sub>E \ \ \. box (a' f) (b' f) \ M}" @@ -886,8 +895,11 @@ fix x assume "x \ M" obtain e where e: "e > 0" "ball x e \ M" using openE[OF `open M` `x \ M`] by auto - moreover then obtain a b where ab: "x \ box a b" - "\i \ Basis. a \ i \ \" "\i\Basis. b \ i \ \" "box a b \ ball x e" + moreover obtain a b where ab: + "x \ box a b" + "\i \ Basis. a \ i \ \" + "\i\Basis. b \ i \ \" + "box a b \ ball x e" using rational_boxes[OF e(1)] by metis ultimately have "x \ (\f\I. box (a' f) (b' f))" by (intro UN_I[of "\i\Basis. (a \ i, b \ i)"]) @@ -908,7 +920,10 @@ e1 \ e2 = {} \ e1 \ {} \ e2 \ {})" - unfolding connected_def openin_open by (safe, blast+) + unfolding connected_def openin_open + apply safe + apply blast+ + done lemma exists_diff: fixes P :: "'a set \ bool" @@ -938,7 +953,7 @@ apply (subst exists_diff) apply blast done - hence th0: "connected S \ + then have th0: "connected S \ \ (\e2 e1. closed e2 \ open e1 \ S \ e1 \ (- e2) \ e1 \ (- e2) \ S = {} \ e1 \ S \ {} \ (- e2) \ S \ {})" (is " _ \ \ (\e2 e1. ?P e2 e1)") apply (simp add: closed_def) @@ -951,7 +966,7 @@ fix e2 { fix e1 - have "?P e2 e1 \ (\t. closed e2 \ t = S\e2 \ open e1 \ t = S\e1 \ t\{} \ t\S)" + have "?P e2 e1 \ (\t. closed e2 \ t = S\e2 \ open e1 \ t = S\e1 \ t\{} \ t \ S)" by auto } then have "(\e1. ?P e2 e1) \ (\t. ?Q e2 t)" @@ -969,7 +984,7 @@ subsection{* Limit points *} -definition (in topological_space) islimpt:: "'a \ 'a set \ bool" (infixr "islimpt" 60) +definition (in topological_space) islimpt:: "'a \ 'a set \ bool" (infixr "islimpt" 60) where "x islimpt S \ (\T. x\T \ open T \ (\y\S. y\T \ y\x))" lemma islimptI: @@ -1068,12 +1083,12 @@ fix x assume C: "\e>0. \x'\S. x' \ x \ dist x' x < e" from e have e2: "e/2 > 0" by arith - from C[rule_format, OF e2] obtain y where y: "y \ S" "y\x" "dist y x < e/2" + from C[rule_format, OF e2] obtain y where y: "y \ S" "y \ x" "dist y x < e/2" by blast let ?m = "min (e/2) (dist x y) " from e2 y(2) have mp: "?m > 0" by (simp add: dist_nz[THEN sym]) - from C[rule_format, OF mp] obtain z where z: "z \ S" "z\x" "dist z x < ?m" + from C[rule_format, OF mp] obtain z where z: "z \ S" "z \ x" "dist z x < ?m" by blast have th: "dist z y < e" using z y by (intro dist_triangle_lt [where z=x], simp) @@ -1170,10 +1185,12 @@ assume "x \ interior S" with `x \ R` `open R` obtain y where "y \ R - S" unfolding interior_def by fast - from `open R` `closed S` have "open (R - S)" by (rule open_Diff) - from `R \ S \ T` have "R - S \ T" by fast - from `y \ R - S` `open (R - S)` `R - S \ T` `interior T = {}` - show "False" unfolding interior_def by fast + from `open R` `closed S` have "open (R - S)" + by (rule open_Diff) + from `R \ S \ T` have "R - S \ T" + by fast + from `y \ R - S` `open (R - S)` `R - S \ T` `interior T = {}` show False + unfolding interior_def by fast qed qed qed @@ -1187,7 +1204,7 @@ fix T assume "T \ A \ B" and "open T" then show "T \ interior A \ interior B" - proof (safe) + proof safe fix x y assume "(x, y) \ T" then obtain C D where "open C" "open D" "C \ D \ T" "x \ C" "y \ D" @@ -1271,7 +1288,7 @@ fix x assume as: "open S" "x \ S \ closure T" { - assume *:"x islimpt T" + assume *: "x islimpt T" have "x islimpt (S \ T)" proof (rule islimptI) fix A @@ -1302,7 +1319,9 @@ by (intro Sigma_mono closure_subset) show "closed (closure A \ closure B)" by (intro closed_Times closed_closure) - fix T assume "A \ B \ T" and "closed T" thus "closure A \ closure B \ T" + fix T + assume "A \ B \ T" and "closed T" + then show "closure A \ closure B \ T" apply (simp add: closed_def open_prod_def, clarify) apply (rule ccontr) apply (drule_tac x="(a, b)" in bspec, simp, clarify, rename_tac C D) @@ -1432,7 +1451,7 @@ "eventually P net \ (\x. P x \ Q x) \ eventually Q net" using eventually_mono [of P Q] by fast -lemma not_eventually: "(\x. \ P x ) \ ~(trivial_limit net) ==> ~(eventually (\x. P x) net)" +lemma not_eventually: "(\x. \ P x ) \ \ trivial_limit net \ \ eventually (\x. P x) net" by (simp add: eventually_False) @@ -1481,7 +1500,7 @@ done lemma Lim_Un_univ: - "(f ---> l) (at x within S) \ (f ---> l) (at x within T) \ + "(f ---> l) (at x within S) \ (f ---> l) (at x within T) \ S \ T = UNIV \ (f ---> l) (at x)" by (metis Lim_Un) @@ -1537,7 +1556,8 @@ assume e: "{x<..} \ I \ {}" show ?thesis proof (rule order_tendstoI) - fix a assume a: "a < Inf (f ` ({x<..} \ I))" + fix a + assume a: "a < Inf (f ` ({x<..} \ I))" { fix y assume "y \ {x<..} \ I" @@ -1620,8 +1640,8 @@ fixes f :: "'a \ 'b::real_normed_vector" assumes "eventually (\x. norm (f x) \ g x) net" "(g ---> 0) net" shows "(f ---> 0) net" + using assms(2) proof (rule metric_tendsto_imp_tendsto) - show "(g ---> 0) net" by fact show "eventually (\x. dist (f x) 0 \ dist (g x) 0) net" using assms(1) by (rule eventually_elim1) (simp add: dist_norm) qed @@ -1717,7 +1737,9 @@ text{* Limit under bilinear function *} lemma Lim_bilinear: - assumes "(f ---> l) net" and "(g ---> m) net" and "bounded_bilinear h" + assumes "(f ---> l) net" + and "(g ---> m) net" + and "bounded_bilinear h" shows "((\x. h (f x) (g x)) ---> (h l m)) net" using `bounded_bilinear h` `(f ---> l) net` `(g ---> m) net` by (rule bounded_bilinear.tendsto) @@ -1733,7 +1755,7 @@ lemma Lim_at_zero: fixes a :: "'a::real_normed_vector" fixes l :: "'b::topological_space" - shows "(f ---> l) (at a) \ ((\x. f(a + x)) ---> l) (at 0)" (is "?lhs = ?rhs") + shows "(f ---> l) (at a) \ ((\x. f(a + x)) ---> l) (at 0)" using LIM_offset_zero LIM_offset_zero_cancel .. text{* It's also sometimes useful to extract the limit point from the filter. *} @@ -1741,8 +1763,7 @@ abbreviation netlimit :: "'a::t2_space filter \ 'a" where "netlimit F \ Lim F (\x. x)" -lemma netlimit_within: - "\ trivial_limit (at a within S) \ netlimit (at a within S) = a" +lemma netlimit_within: "\ trivial_limit (at a within S) \ netlimit (at a within S) = a" by (rule tendsto_Lim) (auto intro: tendsto_intros) lemma netlimit_at: @@ -1776,8 +1797,9 @@ done lemma Lim_transform_within: - assumes "0 < d" and "\x'\S. 0 < dist x' x \ dist x' x < d \ f x' = g x'" - and "(f ---> l) (at x within S)" + assumes "0 < d" + and "\x'\S. 0 < dist x' x \ dist x' x < d \ f x' = g x'" + and "(f ---> l) (at x within S)" shows "(g ---> l) (at x within S)" proof (rule Lim_transform_eventually) show "eventually (\x. f x = g x) (at x within S)" @@ -1786,22 +1808,24 @@ qed lemma Lim_transform_at: - assumes "0 < d" and "\x'. 0 < dist x' x \ dist x' x < d \ f x' = g x'" - and "(f ---> l) (at x)" + assumes "0 < d" + and "\x'. 0 < dist x' x \ dist x' x < d \ f x' = g x'" + and "(f ---> l) (at x)" shows "(g ---> l) (at x)" + using _ assms(3) proof (rule Lim_transform_eventually) show "eventually (\x. f x = g x) (at x)" unfolding eventually_at2 using assms(1,2) by auto - show "(f ---> l) (at x)" by fact qed text{* Common case assuming being away from some crucial point like 0. *} lemma Lim_transform_away_within: fixes a b :: "'a::t1_space" - assumes "a \ b" and "\x\S. x \ a \ x \ b \ f x = g x" - and "(f ---> l) (at a within S)" + assumes "a \ b" + and "\x\S. x \ a \ x \ b \ f x = g x" + and "(f ---> l) (at a within S)" shows "(g ---> l) (at a within S)" proof (rule Lim_transform_eventually) show "(f ---> l) (at a within S)" by fact @@ -1821,8 +1845,9 @@ text{* Alternatively, within an open set. *} lemma Lim_transform_within_open: - assumes "open S" and "a \ S" and "\x\S. x \ a \ f x = g x" - and "(f ---> l) (at a)" + assumes "open S" and "a \ S" + and "\x\S. x \ a \ f x = g x" + and "(f ---> l) (at a)" shows "(g ---> l) (at a)" proof (rule Lim_transform_eventually) show "eventually (\x. f x = g x) (at a)" @@ -1836,15 +1861,17 @@ (* FIXME: Only one congruence rule for tendsto can be used at a time! *) lemma Lim_cong_within(*[cong add]*): - assumes "a = b" "x = y" "S = T" - assumes "\x. x \ b \ x \ T \ f x = g x" + assumes "a = b" + and "x = y" + and "S = T" + and "\x. x \ b \ x \ T \ f x = g x" shows "(f ---> x) (at a within S) \ (g ---> y) (at b within T)" unfolding tendsto_def eventually_at_topological using assms by simp lemma Lim_cong_at(*[cong add]*): assumes "a = b" "x = y" - assumes "\x. x \ a \ f x = g x" + and "\x. x \ a \ f x = g x" shows "((\x. f x) ---> x) (at a) \ ((g ---> y) (at a))" unfolding tendsto_def eventually_at_topological using assms by simp @@ -1855,19 +1882,22 @@ fixes l :: "'a::first_countable_topology" shows "l \ closure S \ (\x. (\n. x n \ S) \ (x ---> l) sequentially)" (is "?lhs = ?rhs") proof - assume "?lhs" moreover - { assume "l \ S" - hence "?rhs" using tendsto_const[of l sequentially] by auto + assume "?lhs" + moreover + { + assume "l \ S" + then have "?rhs" using tendsto_const[of l sequentially] by auto } moreover - { assume "l islimpt S" - hence "?rhs" unfolding islimpt_sequential by auto + { + assume "l islimpt S" + then have "?rhs" unfolding islimpt_sequential by auto } ultimately show "?rhs" unfolding closure_def by auto next assume "?rhs" - thus "?lhs" unfolding closure_def islimpt_sequential by auto + then show "?lhs" unfolding closure_def islimpt_sequential by auto qed lemma closed_sequential_limits: @@ -1898,7 +1928,8 @@ have *: "\x\S. Inf S \ x" using cInf_lower_EX[of _ S] assms by metis { - fix e :: real assume "0 < e" + fix e :: real + assume "e > 0" then have "Inf S < Inf S + e" by simp with assms obtain x where "x \ S" "x < Inf S + e" by (subst (asm) cInf_less_iff[of _ B]) auto @@ -1920,9 +1951,11 @@ "(\ trivial_limit (at x within S)) = (\e>0. S \ ball x e - {x} \ {})" (is "?lhs = ?rhs") proof - - { assume "?lhs" - { fix e :: real - assume "e>0" + { + assume "?lhs" + { + fix e :: real + assume "e > 0" then obtain y where "y:(S-{x}) & dist y x < e" using `?lhs` not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] by auto @@ -1933,16 +1966,21 @@ then have "?rhs" by auto } moreover - { assume "?rhs" - { fix e :: real - assume "e>0" - then obtain y where "y : (S Int ball x e - {x})" using `?rhs` by blast + { + assume "?rhs" + { + fix e :: real + assume "e > 0" + then obtain y where "y : (S Int ball x e - {x})" + using `?rhs` by blast then have "y:(S-{x}) & dist y x < e" unfolding ball_def by (simp add: dist_commute) - then have "EX y:(S-{x}). dist y x < e" by auto + then have "EX y:(S-{x}). dist y x < e" + by auto } then have "?lhs" - using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] by auto + using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] + by auto } ultimately show ?thesis by auto qed @@ -1975,34 +2013,47 @@ lemma infdist_triangle: "infdist x A \ infdist y A + dist x y" proof cases assume "A = {}" - thus ?thesis by (simp add: infdist_def) + then show ?thesis by (simp add: infdist_def) next assume "A \ {}" then obtain a where "a \ A" by auto have "infdist x A \ Inf {dist x y + dist y a |a. a \ A}" proof (rule cInf_greatest) - from `A \ {}` show "{dist x y + dist y a |a. a \ A} \ {}" by simp - fix d assume "d \ {dist x y + dist y a |a. a \ A}" - then obtain a where d: "d = dist x y + dist y a" "a \ A" by auto + from `A \ {}` show "{dist x y + dist y a |a. a \ A} \ {}" + by simp + fix d + assume "d \ {dist x y + dist y a |a. a \ A}" + then obtain a where d: "d = dist x y + dist y a" "a \ A" + by auto show "infdist x A \ d" unfolding infdist_notempty[OF `A \ {}`] proof (rule cInf_lower2) - show "dist x a \ {dist x a |a. a \ A}" using `a \ A` by auto - show "dist x a \ d" unfolding d by (rule dist_triangle) - fix d assume "d \ {dist x a |a. a \ A}" - then obtain a where "a \ A" "d = dist x a" by auto - thus "infdist x A \ d" by (rule infdist_le) + show "dist x a \ {dist x a |a. a \ A}" + using `a \ A` by auto + show "dist x a \ d" + unfolding d by (rule dist_triangle) + fix d + assume "d \ {dist x a |a. a \ A}" + then obtain a where "a \ A" "d = dist x a" + by auto + then show "infdist x A \ d" + by (rule infdist_le) qed qed also have "\ = dist x y + infdist y A" proof (rule cInf_eq, safe) - fix a assume "a \ A" - thus "dist x y + infdist y A \ dist x y + dist y a" by (auto intro: infdist_le) + fix a + assume "a \ A" + then show "dist x y + infdist y A \ dist x y + dist y a" + by (auto intro: infdist_le) next - fix i assume inf: "\d. d \ {dist x y + dist y a |a. a \ A} \ i \ d" - hence "i - dist x y \ infdist y A" unfolding infdist_notempty[OF `A \ {}`] using `a \ A` + fix i + assume inf: "\d. d \ {dist x y + dist y a |a. a \ A} \ i \ d" + then have "i - dist x y \ infdist y A" + unfolding infdist_notempty[OF `A \ {}`] using `a \ A` by (intro cInf_greatest) (auto simp: field_simps) - thus "i \ dist x y + infdist y A" by simp + then show "i \ dist x y + infdist y A" + by simp qed finally show ?thesis by simp qed @@ -2015,27 +2066,32 @@ show "infdist x A = 0" proof (rule ccontr) assume "infdist x A \ 0" - with infdist_nonneg[of x A] have "infdist x A > 0" by auto - hence "ball x (infdist x A) \ closure A = {}" + with infdist_nonneg[of x A] have "infdist x A > 0" + by auto + then have "ball x (infdist x A) \ closure A = {}" apply auto apply (metis `0 < infdist x A` `x \ closure A` closure_approachable dist_commute eucl_less_not_refl euclidean_trans(2) infdist_le) done - hence "x \ closure A" + then have "x \ closure A" by (metis `0 < infdist x A` centre_in_ball disjoint_iff_not_equal) - thus False using `x \ closure A` by simp + then show False using `x \ closure A` by simp qed next assume x: "infdist x A = 0" - then obtain a where "a \ A" by atomize_elim (metis all_not_in_conv assms) - show "x \ closure A" unfolding closure_approachable - proof (safe, rule ccontr) - fix e::real assume "0 < e" + then obtain a where "a \ A" + by atomize_elim (metis all_not_in_conv assms) + show "x \ closure A" + unfolding closure_approachable + apply safe + proof (rule ccontr) + fix e :: real + assume "e > 0" assume "\ (\y\A. dist y x < e)" - hence "infdist x A \ e" using `a \ A` + then have "infdist x A \ e" using `a \ A` unfolding infdist_def by (force simp: dist_commute intro: cInf_greatest) - with x `0 < e` show False by auto + with x `e > 0` show False by auto qed qed @@ -2052,7 +2108,8 @@ assumes f: "(f ---> l) F" shows "((\x. infdist (f x) A) ---> infdist l A) F" proof (rule tendstoI) - fix e ::real assume "0 < e" + fix e ::real + assume "e > 0" from tendstoD[OF f this] show "eventually (\x. dist (infdist (f x) A) (infdist l A) < e) F" proof (eventually_elim) @@ -2111,13 +2168,13 @@ { fix x and e::real assume "x\S" "e>0" "ball x e \ S" - hence "\d>0. cball x d \ S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto) + then have "\d>0. cball x d \ S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto) } moreover { fix x and e::real assume "x\S" "e>0" "cball x e \ S" - hence "\d>0. ball x d \ S" + then have "\d>0. ball x d \ S" unfolding subset_eq apply(rule_tac x="e/2" in exI) apply auto @@ -2142,11 +2199,14 @@ shows "y islimpt ball x e \ 0 < e \ y \ cball x e" (is "?lhs = ?rhs") proof assume "?lhs" - { assume "e \ 0" - hence *:"ball x e = {}" using ball_eq_empty[of x e] by auto - have False using `?lhs` unfolding * using islimpt_EMPTY[of y] by auto + { + assume "e \ 0" + then have *:"ball x e = {}" + using ball_eq_empty[of x e] by auto + have False using `?lhs` + unfolding * using islimpt_EMPTY[of y] by auto } - hence "e > 0" by (metis not_less) + then have "e > 0" by (metis not_less) moreover have "y \ cball x e" using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"] @@ -2154,44 +2214,62 @@ unfolding closed_limpt by auto ultimately show "?rhs" by auto next - assume "?rhs" hence "e>0" by auto - { fix d::real assume "d>0" + assume "?rhs" + then have "e>0" by auto + { + fix d :: real + assume "d > 0" have "\x'\ball x e. x' \ y \ dist x' y < d" - proof(cases "d \ dist x y") - case True thus "\x'\ball x e. x' \ y \ dist x' y < d" - proof(cases "x=y") - case True hence False using `d \ dist x y` `d>0` by auto - thus "\x'\ball x e. x' \ y \ dist x' y < d" by auto + proof (cases "d \ dist x y") + case True + then show "\x'\ball x e. x' \ y \ dist x' y < d" + proof (cases "x = y") + case True + then have False + using `d \ dist x y` `d>0` by auto + then show "\x'\ball x e. x' \ y \ dist x' y < d" + by auto next case False - - have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) - = norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))" - unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[THEN sym] by auto + have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) = + norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))" + unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[THEN sym] + by auto also have "\ = \- 1 + d / (2 * norm (x - y))\ * norm (x - y)" using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"] unfolding scaleR_minus_left scaleR_one by (auto simp add: norm_minus_commute) also have "\ = \- norm (x - y) + d / 2\" unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]] - unfolding distrib_right using `x\y`[unfolded dist_nz, unfolded dist_norm] by auto - also have "\ \ e - d/2" using `d \ dist x y` and `d>0` and `?rhs` by(auto simp add: dist_norm) - finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \ ball x e" using `d>0` by auto - + unfolding distrib_right using `x\y`[unfolded dist_nz, unfolded dist_norm] + by auto + also have "\ \ e - d/2" using `d \ dist x y` and `d>0` and `?rhs` + by (auto simp add: dist_norm) + finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \ ball x e" using `d>0` + by auto moreover - have "(d / (2*dist y x)) *\<^sub>R (y - x) \ 0" - using `x\y`[unfolded dist_nz] `d>0` unfolding scaleR_eq_0_iff by (auto simp add: dist_commute) + using `x\y`[unfolded dist_nz] `d>0` unfolding scaleR_eq_0_iff + by (auto simp add: dist_commute) moreover - have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" unfolding dist_norm apply simp unfolding norm_minus_cancel - using `d>0` `x\y`[unfolded dist_nz] dist_commute[of x y] - unfolding dist_norm by auto - ultimately show "\x'\ball x e. x' \ y \ dist x' y < d" by (rule_tac x="y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI) auto + have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" + unfolding dist_norm + apply simp + unfolding norm_minus_cancel + using `d > 0` `x\y`[unfolded dist_nz] dist_commute[of x y] + unfolding dist_norm + apply auto + done + ultimately show "\x'\ball x e. x' \ y \ dist x' y < d" + apply (rule_tac x = "y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI) + apply auto + done qed next - case False hence "d > dist x y" by auto - show "\x'\ball x e. x' \ y \ dist x' y < d" - proof(cases "x=y") + case False + then have "d > dist x y" by auto + show "\x' \ ball x e. x' \ y \ dist x' y < d" + proof (cases "x = y") case True obtain z where **: "z \ y" "dist z y < min e d" using perfect_choose_dist[of "min e d" y] @@ -2199,20 +2277,30 @@ show "\x'\ball x e. x' \ y \ dist x' y < d" unfolding `x = y` using `z \ y` ** - by (rule_tac x=z in bexI, auto simp add: dist_commute) + apply (rule_tac x=z in bexI) + apply (auto simp add: dist_commute) + done next - case False thus "\x'\ball x e. x' \ y \ dist x' y < d" - using `d>0` `d > dist x y` `?rhs` by(rule_tac x=x in bexI, auto) + case False + then show "\x'\ball x e. x' \ y \ dist x' y < d" + using `d>0` `d > dist x y` `?rhs` + apply (rule_tac x=x in bexI) + apply auto + done qed - qed } - thus "?lhs" unfolding mem_cball islimpt_approachable mem_ball by auto + qed + } + then show "?lhs" + unfolding mem_cball islimpt_approachable mem_ball by auto qed lemma closure_ball_lemma: fixes x y :: "'a::real_normed_vector" - assumes "x \ y" shows "y islimpt ball x (dist x y)" + assumes "x \ y" + shows "y islimpt ball x (dist x y)" proof (rule islimptI) - fix T assume "y \ T" "open T" + fix T + assume "y \ T" "open T" then obtain r where "0 < r" "\z. dist z y < r \ z \ T" unfolding open_dist by fast (* choose point between x and y, within distance r of y. *) @@ -2223,7 +2311,8 @@ have "dist z y < r" unfolding z_def k_def using `0 < r` by (simp add: dist_norm min_def) - hence "z \ T" using `\z. dist z y < r \ z \ T` by simp + then have "z \ T" + using `\z. dist z y < r \ z \ T` by simp have "dist x z < dist x y" unfolding z_def2 dist_norm apply (simp add: norm_minus_commute) @@ -2233,7 +2322,8 @@ apply (simp add: k_def divide_pos_pos zero_less_dist_iff `0 < r` `x \ y`) apply (simp add: zero_less_dist_iff `x \ y`) done - hence "z \ ball x (dist x y)" by simp + then have "z \ ball x (dist x y)" + by simp have "z \ y" unfolding z_def k_def using `x \ y` `0 < r` by (simp add: min_def) @@ -2265,51 +2355,72 @@ shows "interior (cball x e) = ball x e" proof (cases "e\0") case False note cs = this - from cs have "ball x e = {}" using ball_empty[of e x] by auto moreover - { fix y assume "y \ cball x e" - hence False unfolding mem_cball using dist_nz[of x y] cs by auto } - hence "cball x e = {}" by auto - hence "interior (cball x e) = {}" using interior_empty by auto + from cs have "ball x e = {}" + using ball_empty[of e x] by auto + moreover + { + fix y + assume "y \ cball x e" + then have False + unfolding mem_cball using dist_nz[of x y] cs by auto + } + then have "cball x e = {}" by auto + then have "interior (cball x e) = {}" + using interior_empty by auto ultimately show ?thesis by blast next case True note cs = this - have "ball x e \ cball x e" using ball_subset_cball by auto moreover - { fix S y assume as: "S \ cball x e" "open S" "y\S" - then obtain d where "d>0" and d:"\x'. dist x' y < d \ x' \ S" unfolding open_dist by blast - + have "ball x e \ cball x e" + using ball_subset_cball by auto + moreover + { + fix S y + assume as: "S \ cball x e" "open S" "y\S" + then obtain d where "d>0" and d: "\x'. dist x' y < d \ x' \ S" + unfolding open_dist by blast then obtain xa where xa_y: "xa \ y" and xa: "dist xa y < d" using perfect_choose_dist [of d] by auto - have "xa\S" using d[THEN spec[where x=xa]] using xa by(auto simp add: dist_commute) - hence xa_cball:"xa \ cball x e" using as(1) by auto - - hence "y \ ball x e" proof(cases "x = y") + have "xa \ S" + using d[THEN spec[where x = xa]] + using xa by (auto simp add: dist_commute) + then have xa_cball: "xa \ cball x e" + using as(1) by auto + then have "y \ ball x e" + proof (cases "x = y") case True - hence "e>0" using xa_y[unfolded dist_nz] xa_cball[unfolded mem_cball] + then have "e > 0" + using xa_y[unfolded dist_nz] xa_cball[unfolded mem_cball] by (auto simp add: dist_commute) - thus "y \ ball x e" using `x = y ` by simp + then show "y \ ball x e" + using `x = y ` by simp next case False - have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d" unfolding dist_norm + have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d" + unfolding dist_norm using `d>0` norm_ge_zero[of "y - x"] `x \ y` by auto - hence *:"y + (d / 2 / dist y x) *\<^sub>R (y - x) \ cball x e" + then have *: "y + (d / 2 / dist y x) *\<^sub>R (y - x) \ cball x e" using d as(1)[unfolded subset_eq] by blast have "y - x \ 0" using `x \ y` by auto - hence **:"d / (2 * norm (y - x)) > 0" + then have **:"d / (2 * norm (y - x)) > 0" unfolding zero_less_norm_iff[THEN sym] using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto - - have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x = norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)" + have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x = + norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)" by (auto simp add: dist_norm algebra_simps) also have "\ = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))" by (auto simp add: algebra_simps) also have "\ = \1 + d / (2 * norm (y - x))\ * norm (y - x)" using ** by auto - also have "\ = (dist y x) + d/2"using ** by (auto simp add: distrib_right dist_norm) - finally have "e \ dist x y +d/2" using *[unfolded mem_cball] by (auto simp add: dist_commute) - thus "y \ ball x e" unfolding mem_ball using `d>0` by auto + also have "\ = (dist y x) + d/2" + using ** by (auto simp add: distrib_right dist_norm) + finally have "e \ dist x y +d/2" + using *[unfolded mem_cball] by (auto simp add: dist_commute) + then show "y \ ball x e" + unfolding mem_ball using `d>0` by auto qed } - hence "\S \ cball x e. open S \ S \ ball x e" by auto + then have "\S \ cball x e. open S \ S \ ball x e" + by auto ultimately show ?thesis using interior_unique[of "ball x e" "cball x e"] using open_ball[of x e] by auto qed @@ -2335,7 +2446,7 @@ apply (metis zero_le_dist dist_self order_less_le_trans) done -lemma cball_empty: "e < 0 ==> cball x e = {}" +lemma cball_empty: "e < 0 \ cball x e = {}" by (simp add: cball_eq_empty) lemma cball_eq_sing: @@ -2345,7 +2456,8 @@ assume e: "0 < e" obtain a where "a \ x" "dist a x < e" using perfect_choose_dist [OF e] by auto - hence "a \ x" "dist x a \ e" by (auto simp add: dist_commute) + then have "a \ x" "dist x a \ e" + by (auto simp add: dist_commute) with e show ?thesis by (auto simp add: set_eq_iff) qed auto @@ -2377,9 +2489,14 @@ unfolding bounded_any_center [where a=0] by (simp add: dist_norm) -lemma bounded_realI: assumes "\x\s. abs (x::real) \ B" shows "bounded s" - unfolding bounded_def dist_real_def apply(rule_tac x=0 in exI) - using assms by auto +lemma bounded_realI: + assumes "\x\s. abs (x::real) \ B" + shows "bounded s" + unfolding bounded_def dist_real_def + apply (rule_tac x=0 in exI) + using assms + apply auto + done lemma bounded_empty [simp]: "bounded {}" by (simp add: bounded_def) @@ -2402,7 +2519,7 @@ then obtain f where f: "\n. f n \ S" "(f ---> y) sequentially" unfolding closure_sequential by auto have "\n. f n \ S \ dist x (f n) \ a" using a by simp - hence "eventually (\n. dist x (f n) \ a) sequentially" + then have "eventually (\n. dist x (f n) \ a) sequentially" by (rule eventually_mono, simp add: f(1)) have "dist x y \ a" apply (rule Lim_dist_ubound [of sequentially f]) @@ -2411,7 +2528,8 @@ apply fact done } - thus ?thesis unfolding bounded_def by auto + then show ?thesis + unfolding bounded_def by auto qed lemma bounded_cball[simp,intro]: "bounded (cball x e)" @@ -2445,8 +2563,8 @@ lemma bounded_insert [simp]: "bounded (insert x S) \ bounded S" proof - have "\y\{x}. dist x y \ 0" by simp - hence "bounded {x}" unfolding bounded_def by fast - thus ?thesis by (metis insert_is_Un bounded_Un) + then have "bounded {x}" unfolding bounded_def by fast + then show ?thesis by (metis insert_is_Un bounded_Un) qed lemma finite_imp_bounded [intro]: "finite S \ bounded S" @@ -2489,14 +2607,16 @@ from assms(2) obtain B where B:"B>0" "\x. norm (f x) \ B * norm x" using bounded_linear.pos_bounded by (auto simp add: mult_ac) { - fix x assume "x\S" - hence "norm x \ b" using b by auto - hence "norm (f x) \ B * b" using B(2) + fix x + assume "x\S" + then have "norm x \ b" using b by auto + then have "norm (f x) \ B * b" using B(2) apply (erule_tac x=x in allE) apply (metis B(1) B(2) order_trans mult_le_cancel_left_pos) done } - thus ?thesis unfolding bounded_pos + then show ?thesis + unfolding bounded_pos apply (rule_tac x="b*B" in exI) using b B mult_pos_pos [of b B] apply (auto simp add: mult_commute) @@ -2514,16 +2634,16 @@ fixes S :: "'a::real_normed_vector set" assumes "bounded S" shows "bounded ((\x. a + x) ` S)" -proof- +proof - from assms obtain b where b:"b>0" "\x\S. norm x \ b" unfolding bounded_pos by auto { fix x assume "x\S" - hence "norm (a + x) \ b + norm a" + then have "norm (a + x) \ b + norm a" using norm_triangle_ineq[of a x] b by auto } - thus ?thesis + then show ?thesis unfolding bounded_pos using norm_ge_zero[of a] b(1) and add_strict_increasing[of b 0 "norm a"] by (auto intro!: exI[of _ "b + norm a"]) @@ -2540,19 +2660,21 @@ lemma bounded_has_Sup: fixes S :: "real set" assumes "bounded S" "S \ {}" - shows "\x\S. x <= Sup S" and "\b. (\x\S. x <= b) \ Sup S <= b" + shows "\x\S. x \ Sup S" + and "\b. (\x\S. x \ b) \ Sup S \ b" proof - fix x assume "x\S" - thus "x \ Sup S" + fix x + assume "x\S" + then show "x \ Sup S" by (metis cSup_upper abs_le_D1 assms(1) bounded_real) next - show "\b. (\x\S. x \ b) \ Sup S \ b" using assms - by (metis cSup_least) + show "\b. (\x\S. x \ b) \ Sup S \ b" + using assms by (metis cSup_least) qed lemma Sup_insert: fixes S :: "real set" - shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))" + shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))" apply (subst cSup_insert_If) apply (rule bounded_has_Sup(1)[of S, rule_format]) apply (auto simp: sup_max) @@ -2569,22 +2691,23 @@ lemma bounded_has_Inf: fixes S :: "real set" assumes "bounded S" "S \ {}" - shows "\x\S. x >= Inf S" and "\b. (\x\S. x >= b) \ Inf S >= b" + shows "\x\S. x \ Inf S" + and "\b. (\x\S. x \ b) \ Inf S \ b" proof fix x assume "x\S" - from assms(1) obtain a where a:"\x\S. \x\ \ a" + from assms(1) obtain a where a: "\x\S. \x\ \ a" unfolding bounded_real by auto - thus "x \ Inf S" using `x\S` + then show "x \ Inf S" using `x\S` by (metis cInf_lower_EX abs_le_D2 minus_le_iff) next - show "\b. (\x\S. x >= b) \ Inf S \ b" using assms - by (metis cInf_greatest) + show "\b. (\x\S. x >= b) \ Inf S \ b" + using assms by (metis cInf_greatest) qed lemma Inf_insert: fixes S :: "real set" - shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" + shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" apply (subst cInf_insert_if) apply (rule bounded_has_Inf(1)[of S, rule_format]) apply (auto simp: inf_min) @@ -2592,8 +2715,11 @@ lemma Inf_insert_finite: fixes S :: "real set" - shows "finite S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" - by (rule Inf_insert, rule finite_imp_bounded, simp) + shows "finite S \ Inf(insert x S) = (if S = {} then x else min x (Inf S))" + apply (rule Inf_insert) + apply (rule finite_imp_bounded) + apply simp + done subsection {* Compactness *} @@ -2606,22 +2732,23 @@ assume "\ (\x \ s. x islimpt t)" then obtain f where f:"\x\s. x \ f x \ open (f x) \ (\y\t. y \ f x \ y = x)" unfolding islimpt_def - using bchoice[of s "\ x T. x \ T \ open T \ (\y\t. y \ T \ y = x)"] by auto - obtain g where g:"g\{t. \x. x \ s \ t = f x}" "finite g" "s \ \g" + using bchoice[of s "\ x T. x \ T \ open T \ (\y\t. y \ T \ y = x)"] + by auto + obtain g where g: "g\{t. \x. x \ s \ t = f x}" "finite g" "s \ \g" using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="{t. \x. x\s \ t = f x}"]] using f by auto from g(1,3) have g':"\x\g. \xa \ s. x = f xa" by auto { fix x y assume "x\t" "y\t" "f x = f y" - hence "x \ f x" "y \ f x \ y = x" + then have "x \ f x" "y \ f x \ y = x" using f[THEN bspec[where x=x]] and `t\s` by auto - hence "x = y" + then have "x = y" using `f x = f y` and f[THEN bspec[where x=y]] and `y\t` and `t\s` by auto } - hence "inj_on f t" + then have "inj_on f t" unfolding inj_on_def by simp - hence "infinite (f ` t)" + then have "infinite (f ` t)" using assms(2) using finite_imageD by auto moreover { @@ -2630,12 +2757,12 @@ from g(3) assms(3) `x\t` obtain h where "h\g" and "x\h" by auto then obtain y where "y\s" "h = f y" using g'[THEN bspec[where x=h]] by auto - hence "y = x" + then have "y = x" using f[THEN bspec[where x=y]] and `x\t` and `x\h`[unfolded `h = f y`] by auto - hence False + then have False using `f x \ g` `h\g` unfolding `h = f y` by auto } - hence "f ` t \ g" by auto + then have "f ` t \ g" by auto ultimately show False using g(2) using finite_subset by auto qed @@ -2668,12 +2795,14 @@ moreover have "(\n. f (r n)) ----> l" proof (rule topological_tendstoI) - fix S assume "open S" "l \ S" + fix S + assume "open S" "l \ S" with A(3) have "eventually (\i. A i \ S) sequentially" by auto moreover { fix i - assume "Suc 0 \ i" then have "f (r i) \ A i" + assume "Suc 0 \ i" + then have "f (r i) \ A i" by (cases i) (simp_all add: r_def s) } then have "eventually (\i. f (r i) \ A i) sequentially" @@ -2687,16 +2816,17 @@ lemma sequence_infinite_lemma: fixes f :: "nat \ 'a::t1_space" - assumes "\n. f n \ l" and "(f ---> l) sequentially" + assumes "\n. f n \ l" + and "(f ---> l) sequentially" shows "infinite (range f)" proof assume "finite (range f)" - hence "closed (range f)" by (rule finite_imp_closed) - hence "open (- range f)" by (rule open_Compl) + then have "closed (range f)" by (rule finite_imp_closed) + then have "open (- range f)" by (rule open_Compl) from assms(1) have "l \ - range f" by auto from assms(2) have "eventually (\n. f n \ - range f) sequentially" using `open (- range f)` `l \ - range f` by (rule topological_tendstoD) - thus False unfolding eventually_sequentially by auto + then show False unfolding eventually_sequentially by auto qed lemma closure_insert: @@ -2715,7 +2845,8 @@ assume *: "x islimpt (insert a s)" show "x islimpt s" proof (rule islimptI) - fix t assume t: "x \ t" "open t" + fix t + assume t: "x \ t" "open t" show "\y\s. y \ t \ y \ x" proof (cases "x = a") case True @@ -2728,11 +2859,12 @@ by (simp_all add: open_Diff) obtain y where "y \ insert a s" "y \ t - {a}" "y \ x" using * t' by (rule islimptE) - thus ?thesis by auto + then show ?thesis by auto qed qed next - assume "x islimpt s" thus "x islimpt (insert a s)" + assume "x islimpt s" + then show "x islimpt (insert a s)" by (rule islimpt_subset) auto qed @@ -2750,14 +2882,17 @@ fixes l :: "'a :: t1_space" shows "l islimpt S \ (\U. l\U \ open U \ infinite (U \ S))" proof (safe intro!: islimptI) - fix U assume "l islimpt S" "l \ U" "open U" "finite (U \ S)" + fix U + assume "l islimpt S" "l \ U" "open U" "finite (U \ S)" then have "l islimpt S" "l \ (U - (U \ S - {l}))" "open (U - (U \ S - {l}))" by (auto intro: finite_imp_closed) then show False by (rule islimptE) auto next - fix T assume *: "\U. l\U \ open U \ infinite (U \ S)" "l \ T" "open T" - then have "infinite (T \ S - {l})" by auto + fix T + assume *: "\U. l\U \ open U \ infinite (U \ S)" "l \ T" "open T" + then have "infinite (T \ S - {l})" + by auto then have "\x. x \ (T \ S - {l})" unfolding ex_in_conv by (intro notI) simp then show "\y\S. y \ T \ y \ l" @@ -2773,7 +2908,8 @@ lemma sequence_unique_limpt: fixes f :: "nat \ 'a::t2_space" - assumes "(f ---> l) sequentially" and "l' islimpt (range f)" + assumes "(f ---> l) sequentially" + and "l' islimpt (range f)" shows "l' = l" proof (rule ccontr) assume "l' \ l" @@ -2784,15 +2920,22 @@ then obtain N where "\n\N. f n \ t" unfolding eventually_sequentially by auto - have "UNIV = {.. {N..}" by auto - hence "l' islimpt (f ` ({.. {N..}))" using assms(2) by simp - hence "l' islimpt (f ` {.. f ` {N..})" by (simp add: image_Un) - hence "l' islimpt (f ` {N..})" by (simp add: islimpt_union_finite) + have "UNIV = {.. {N..}" + by auto + then have "l' islimpt (f ` ({.. {N..}))" + using assms(2) by simp + then have "l' islimpt (f ` {.. f ` {N..})" + by (simp add: image_Un) + then have "l' islimpt (f ` {N..})" + by (simp add: islimpt_union_finite) then obtain y where "y \ f ` {N..}" "y \ s" "y \ l'" using `l' \ s` `open s` by (rule islimptE) - then obtain n where "N \ n" "f n \ s" "f n \ l'" by auto - with `\n\N. f n \ t` have "f n \ s \ t" by simp - with `s \ t = {}` show False by simp + then obtain n where "N \ n" "f n \ s" "f n \ l'" + by auto + with `\n\N. f n \ t` have "f n \ s \ t" + by simp + with `s \ t = {}` show False + by simp qed lemma bolzano_weierstrass_imp_closed: @@ -2803,21 +2946,22 @@ { fix x l assume as: "\n::nat. x n \ s" "(x ---> l) sequentially" - hence "l \ s" + then have "l \ s" proof (cases "\n. x n \ l") case False - thus "l\s" using as(1) by auto + then show "l\s" using as(1) by auto next case True note cas = this with as(2) have "infinite (range x)" using sequence_infinite_lemma[of x l] by auto then obtain l' where "l'\s" "l' islimpt (range x)" using assms[THEN spec[where x="range x"]] as(1) by auto - thus "l\s" using sequence_unique_limpt[of x l l'] + then show "l\s" using sequence_unique_limpt[of x l l'] using as cas by auto qed } - thus ?thesis unfolding closed_sequential_limits by fast + then show ?thesis + unfolding closed_sequential_limits by fast qed lemma compact_imp_bounded: @@ -2830,14 +2974,15 @@ by (rule compactE_image) from `finite D` have "bounded (\x\D. ball x 1)" by (simp add: bounded_UN) - thus "bounded U" using `U \ (\x\D. ball x 1)` + then show "bounded U" using `U \ (\x\D. ball x 1)` by (rule bounded_subset) qed text{* In particular, some common special cases. *} lemma compact_union [intro]: - assumes "compact s" "compact t" shows " compact (s \ t)" + assumes "compact s" "compact t" + shows " compact (s \ t)" proof (rule compactI) fix f assume *: "Ball f open" "s \ t \ \f" @@ -2858,14 +3003,16 @@ unfolding SUP_def by (rule compact_Union) auto lemma closed_inter_compact [intro]: - assumes "closed s" and "compact t" + assumes "closed s" + and "compact t" shows "compact (s \ t)" using compact_inter_closed [of t s] assms by (simp add: Int_commute) lemma compact_inter [intro]: fixes s t :: "'a :: t2_space set" - assumes "compact s" and "compact t" + assumes "compact s" + and "compact t" shows "compact (s \ t)" using assms by (intro compact_inter_closed compact_imp_closed) @@ -2873,11 +3020,12 @@ unfolding compact_eq_heine_borel by auto lemma compact_insert [simp]: - assumes "compact s" shows "compact (insert x s)" + assumes "compact s" + shows "compact (insert x s)" proof - have "compact ({x} \ s)" using compact_sing assms by (rule compact_union) - thus ?thesis by simp + then show ?thesis by simp qed lemma finite_imp_compact: "finite s \ compact s" @@ -2898,7 +3046,9 @@ (\A. (\a\A. closed a) \ (\B \ A. finite B \ U \ \B \ {}) \ U \ \A \ {})" (is "_ \ ?R") proof (safe intro!: compact_eq_heine_borel[THEN iffD2]) - fix A assume "compact U" and A: "\a\A. closed a" "U \ \A = {}" + fix A + assume "compact U" + and A: "\a\A. closed a" "U \ \A = {}" and fi: "\B \ A. finite B \ U \ \B \ {}" from A have "(\a\uminus`A. open a) \ U \ \(uminus`A)" by auto @@ -2907,8 +3057,10 @@ with fi[THEN spec, of B] show False by (auto dest: finite_imageD intro: inj_setminus) next - fix A assume ?R and cover: "\a\A. open a" "U \ \A" - from cover have "U \ \(uminus`A) = {}" "\a\uminus`A. closed a" + fix A + assume ?R + assume "\a\A. open a" "U \ \A" + then have "U \ \(uminus`A) = {}" "\a\uminus`A. closed a" by auto with `?R` obtain B where "B \ A" "finite (uminus`B)" "U \ \(uminus`B) = {}" by (metis subset_image_iff) @@ -2956,8 +3108,9 @@ "x \ closure X \ (\A. \S\A. open S \ x \ S \ X \ A \ {})" proof safe assume x: "x \ closure X" - fix S A assume "open S" "x \ S" "X \ A = {}" "S \ A" - then have "x \ closure (-S)" + fix S A + assume "open S" "x \ S" "X \ A = {}" "S \ A" + then have "x \ closure (-S)" by (auto simp: closure_complement subset_eq[symmetric] intro: interiorI) with x have "x \ closure X - closure (-S)" by auto @@ -2975,14 +3128,16 @@ lemma compact_filter: "compact U \ (\F. F \ bot \ eventually (\x. x \ U) F \ (\x\U. inf (nhds x) F \ bot))" proof (intro allI iffI impI compact_fip[THEN iffD2] notI) - fix F assume "compact U" and F: "F \ bot" "eventually (\x. x \ U) F" - from F have "U \ {}" + fix F + assume "compact U" + assume F: "F \ bot" "eventually (\x. x \ U) F" + then have "U \ {}" by (auto simp: eventually_False) def Z \ "closure ` {A. eventually (\x. x \ A) F}" then have "\z\Z. closed z" by auto - moreover + moreover have ev_Z: "\z. z \ Z \ eventually (\x. x \ z) F" unfolding Z_def by (auto elim: eventually_elim1 intro: set_mp[OF closure_subset]) have "(\B \ Z. finite B \ U \ \B \ {})" @@ -2997,7 +3152,8 @@ qed ultimately have "U \ \Z \ {}" using `compact U` unfolding compact_fip by blast - then obtain x where "x \ U" and x: "\z. z \ Z \ x \ z" by auto + then obtain x where "x \ U" and x: "\z. z \ Z \ x \ z" + by auto have "\P. eventually P (inf (nhds x) F) \ P \ bot" unfolding eventually_inf eventually_nhds @@ -3012,8 +3168,8 @@ with `x \ U` show "\x\U. inf (nhds x) F \ bot" by (metis eventually_bot) next - fix A assume A: "\a\A. closed a" "\B\A. finite B \ U \ \B \ {}" "U \ \A = {}" - + fix A + assume A: "\a\A. closed a" "\B\A. finite B \ U \ \B \ {}" "U \ \A = {}" def P' \ "(\a (x::'a). x \ a)" then have inj_P': "\A. inj_on P' A" by (auto intro!: inj_onI simp: fun_eq_iff) @@ -3021,33 +3177,42 @@ have "F \ bot" unfolding F_def proof (safe intro!: filter_from_subbase_not_bot) - fix X assume "X \ P' ` insert U A" "finite X" "Inf X = bot" + fix X + assume "X \ P' ` insert U A" "finite X" "Inf X = bot" then obtain B where "B \ insert U A" "finite B" and B: "Inf (P' ` B) = bot" unfolding subset_image_iff by (auto intro: inj_P' finite_imageD) - with A(2)[THEN spec, of "B - {U}"] have "U \ \(B - {U}) \ {}" by auto - with B show False by (auto simp: P'_def fun_eq_iff) + with A(2)[THEN spec, of "B - {U}"] have "U \ \(B - {U}) \ {}" + by auto + with B show False + by (auto simp: P'_def fun_eq_iff) qed moreover have "eventually (\x. x \ U) F" unfolding F_def by (rule eventually_filter_from_subbaseI) (auto simp: P'_def) - moreover assume "\F. F \ bot \ eventually (\x. x \ U) F \ (\x\U. inf (nhds x) F \ bot)" + moreover + assume "\F. F \ bot \ eventually (\x. x \ U) F \ (\x\U. inf (nhds x) F \ bot)" ultimately obtain x where "x \ U" and x: "inf (nhds x) F \ bot" by auto - { fix V assume "V \ A" + { + fix V + assume "V \ A" then have V: "eventually (\x. x \ V) F" by (auto simp add: F_def image_iff P'_def intro!: eventually_filter_from_subbaseI) have "x \ closure V" unfolding closure_iff_nhds_not_empty proof (intro impI allI) - fix S A assume "open S" "x \ S" "S \ A" - then have "eventually (\x. x \ A) (nhds x)" by (auto simp: eventually_nhds) + fix S A + assume "open S" "x \ S" "S \ A" + then have "eventually (\x. x \ A) (nhds x)" + by (auto simp: eventually_nhds) with V have "eventually (\x. x \ V \ A) (inf (nhds x) F)" by (auto simp: eventually_inf) with x show "V \ A \ {}" by (auto simp del: Int_iff simp add: trivial_limit_def) qed then have "x \ V" - using `V \ A` A(1) by simp } + using `V \ A` A(1) by simp + } with `x\U` have "x \ U \ \A" by auto with `U \ \A = {}` show False by auto qed @@ -3070,12 +3235,14 @@ lemma countably_compact_imp_compact: assumes "countably_compact U" - assumes ccover: "countable B" "\b\B. open b" - assumes basis: "\T x. open T \ x \ T \ x \ U \ \b\B. x \ b \ b \ U \ T" + and ccover: "countable B" "\b\B. open b" + and basis: "\T x. open T \ x \ T \ x \ U \ \b\B. x \ b \ b \ U \ T" shows "compact U" - using `countably_compact U` unfolding compact_eq_heine_borel countably_compact_def + using `countably_compact U` + unfolding compact_eq_heine_borel countably_compact_def proof safe - fix A assume A: "\a\A. open a" "U \ \A" + fix A + assume A: "\a\A. open a" "U \ \A" assume *: "\A. countable A \ (\a\A. open a) \ U \ \A \ (\T\A. finite T \ U \ \T)" moreover def C \ "{b\B. \a\A. b \ U \ a}" @@ -3084,10 +3251,12 @@ moreover have "\A \ U \ \C" proof safe - fix x a assume "x \ U" "x \ a" "a \ A" - with basis[of a x] A obtain b where "b \ B" "x \ b" "b \ U \ a" by blast - with `a \ A` show "x \ \C" unfolding C_def - by auto + fix x a + assume "x \ U" "x \ a" "a \ A" + with basis[of a x] A obtain b where "b \ B" "x \ b" "b \ U \ a" + by blast + with `a \ A` show "x \ \C" + unfolding C_def by auto qed then have "U \ \C" using `U \ \A` by auto ultimately obtain T where "T\C" "finite T" "U \ \T" @@ -3102,22 +3271,22 @@ lemma countably_compact_imp_compact_second_countable: "countably_compact U \ compact (U :: 'a :: second_countable_topology set)" proof (rule countably_compact_imp_compact) - fix T and x :: 'a assume "open T" "x \ T" + fix T and x :: 'a + assume "open T" "x \ T" from topological_basisE[OF is_basis this] guess b . - then show "\b\SOME B. countable B \ topological_basis B. x \ b \ b \ U \ T" by auto + then show "\b\SOME B. countable B \ topological_basis B. x \ b \ b \ U \ T" + by auto qed (insert countable_basis topological_basis_open[OF is_basis], auto) lemma countably_compact_eq_compact: "countably_compact U \ compact (U :: 'a :: second_countable_topology set)" using countably_compact_imp_compact_second_countable compact_imp_countably_compact by blast - + subsubsection{* Sequential compactness *} -definition - seq_compact :: "'a::topological_space set \ bool" where - "seq_compact S \ - (\f. (\n. f n \ S) \ - (\l\S. \r. subseq r \ ((f o r) ---> l) sequentially))" +definition seq_compact :: "'a::topological_space set \ bool" + where "seq_compact S \ + (\f. (\n. f n \ S) \ (\l\S. \r. subseq r \ ((f o r) ---> l) sequentially))" lemma seq_compact_imp_countably_compact: fixes U :: "'a :: first_countable_topology set" @@ -3138,13 +3307,17 @@ show ?thesis proof (rule ccontr) assume "\ (\T\A. finite T \ U \ \T)" - then have "\T. \x. T \ A \ finite T \ (x \ U - \T)" by auto - then obtain X' where T: "\T. T \ A \ finite T \ X' T \ U - \T" by metis + then have "\T. \x. T \ A \ finite T \ (x \ U - \T)" + by auto + then obtain X' where T: "\T. T \ A \ finite T \ X' T \ U - \T" + by metis def X \ "\n. X' (from_nat_into A ` {.. n})" have X: "\n. X n \ U - (\i\n. from_nat_into A i)" using `A \ {}` unfolding X_def SUP_def by (intro T) (auto intro: from_nat_into) - then have "range X \ U" by auto - with subseq[of X] obtain r x where "x \ U" and r: "subseq r" "(X \ r) ----> x" by auto + then have "range X \ U" + by auto + with subseq[of X] obtain r x where "x \ U" and r: "subseq r" "(X \ r) ----> x" + by auto from `x\U` `U \ \A` from_nat_into_surj[OF `countable A`] obtain n where "x \ from_nat_into A n" by auto with r(2) A(1) from_nat_into[OF `A \ {}`, of n] @@ -3164,7 +3337,8 @@ lemma compact_imp_seq_compact: fixes U :: "'a :: first_countable_topology set" - assumes "compact U" shows "seq_compact U" + assumes "compact U" + shows "seq_compact U" unfolding seq_compact_def proof safe fix X :: "nat \ 'a" @@ -3185,7 +3359,8 @@ have "\a. i < a \ X a \ A (Suc n)" proof (rule ccontr) assume "\ (\a>i. X a \ A (Suc n))" - then have "\a. Suc i \ a \ X a \ A (Suc n)" by auto + then have "\a. Suc i \ a \ X a \ A (Suc n)" + by auto then have "eventually (\x. x \ A (Suc n)) (filtermap X sequentially)" by (auto simp: eventually_filtermap eventually_sequentially) moreover have "eventually (\x. x \ A (Suc n)) (nhds x)" @@ -3207,7 +3382,8 @@ proof (rule topological_tendstoI) fix S assume "open S" "x \ S" - with A(3) have "eventually (\i. A i \ S) sequentially" by auto + with A(3) have "eventually (\i. A i \ S) sequentially" + by auto moreover { fix i @@ -3238,9 +3414,9 @@ assumes "countably_compact s" "countable t" "infinite t" "t \ s" shows "\x\s. \U. x\U \ open U \ infinite (U \ t)" proof (rule ccontr) - def C \ "(\F. interior (F \ (- t))) ` {F. finite F \ F \ t }" + def C \ "(\F. interior (F \ (- t))) ` {F. finite F \ F \ t }" note `countably_compact s` - moreover have "\t\C. open t" + moreover have "\t\C. open t" by (auto simp: C_def) moreover assume "\ (\x\s. \U. x\U \ open U \ infinite (U \ t))" @@ -3256,19 +3432,20 @@ from `countable t` have "countable C" unfolding C_def by (auto intro: countable_Collect_finite_subset) ultimately guess D by (rule countably_compactE) - then obtain E where E: "E \ {F. finite F \ F \ t }" "finite E" and - s: "s \ (\F\E. interior (F \ (- t)))" + then obtain E where E: "E \ {F. finite F \ F \ t }" "finite E" + and s: "s \ (\F\E. interior (F \ (- t)))" by (metis (lifting) Union_image_eq finite_subset_image C_def) from s `t \ s` have "t \ \E" using interior_subset by blast moreover have "finite (\E)" using E by auto - ultimately show False using `infinite t` by (auto simp: finite_subset) + ultimately show False using `infinite t` + by (auto simp: finite_subset) qed lemma countable_acc_point_imp_seq_compact: fixes s :: "'a::first_countable_topology set" - assumes "\t. infinite t \ countable t \ t \ s --> (\x\s. \U. x\U \ open U \ infinite (U \ t))" + assumes "\t. infinite t \ countable t \ t \ s \ (\x\s. \U. x\U \ open U \ infinite (U \ t))" shows "seq_compact s" proof - { @@ -3281,20 +3458,22 @@ using pigeonhole_infinite[OF _ True] by auto then obtain r where "subseq r" and fr: "\n. f (r n) = f l" using infinite_enumerate by blast - hence "subseq r \ (f \ r) ----> f l" + then have "subseq r \ (f \ r) ----> f l" by (simp add: fr tendsto_const o_def) with f show "\l\s. \r. subseq r \ (f \ r) ----> l" by auto next case False - with f assms have "\x\s. \U. x\U \ open U \ infinite (U \ range f)" by auto + with f assms have "\x\s. \U. x\U \ open U \ infinite (U \ range f)" + by auto then obtain l where "l \ s" "\U. l\U \ open U \ infinite (U \ range f)" .. from this(2) have "\r. subseq r \ ((f \ r) ---> l) sequentially" using acc_point_range_imp_convergent_subsequence[of l f] by auto with `l \ s` show "\l\s. \r. subseq r \ ((f \ r) ---> l) sequentially" .. qed } - thus ?thesis unfolding seq_compact_def by auto + then show ?thesis + unfolding seq_compact_def by auto qed lemma seq_compact_eq_countably_compact: @@ -3327,11 +3506,11 @@ subsubsection{* Total boundedness *} -lemma cauchy_def: - "Cauchy s \ (\e>0. \N. \m n. m \ N \ n \ N --> dist(s m)(s n) < e)" +lemma cauchy_def: "Cauchy s \ (\e>0. \N. \m n. m \ N \ n \ N --> dist(s m)(s n) < e)" unfolding Cauchy_def by metis -fun helper_1 :: "('a::metric_space set) \ real \ nat \ 'a" where +fun helper_1 :: "('a::metric_space set) \ real \ nat \ 'a" +where "helper_1 s e n = (SOME y::'a. y \ s \ (\m (dist (helper_1 s e m) y < e)))" declare helper_1.simps[simp del] @@ -3340,7 +3519,8 @@ shows "\e>0. \k. finite k \ k \ s \ s \ (\((\x. ball x e) ` k))" proof (rule, rule, rule ccontr) fix e::real - assume "e>0" and assm:"\ (\k. finite k \ k \ s \ s \ \((\x. ball x e) ` k))" + assume "e > 0" + assume assm: "\ (\k. finite k \ k \ s \ s \ \((\x. ball x e) ` k))" def x \ "helper_1 s e" { fix n @@ -3365,11 +3545,11 @@ using z apply auto done - thus "x n \ s \ (\m dist (x m) (x n) < e)" + then show "x n \ s \ (\m dist (x m) (x n) < e)" unfolding Q_def by auto qed } - hence "\n::nat. x n \ s" and x:"\n. \m < n. \ (dist (x m) (x n) < e)" + then have "\n::nat. x n \ s" and x:"\n. \m < n. \ (dist (x m) (x n) < e)" by blast+ then obtain l r where "l\s" and r:"subseq r" and "((x \ r) ---> l) sequentially" using assms(1)[unfolded seq_compact_def, THEN spec[where x=x]] by auto @@ -3388,7 +3568,8 @@ lemma seq_compact_imp_heine_borel: fixes s :: "'a :: metric_space set" - assumes "seq_compact s" shows "compact s" + assumes "seq_compact s" + shows "compact s" proof - from seq_compact_imp_totally_bounded[OF `seq_compact s`] guess f unfolding choice_iff' .. note f = this @@ -3403,20 +3584,29 @@ intro!: countable_image countable_SIGMA countable_UN) show "\b\K. open b" by (auto simp: K_def) next - fix T x assume T: "open T" "x \ T" and x: "x \ s" - from openE[OF T] obtain e where "0 < e" "ball x e \ T" by auto - then have "0 < e / 2" "ball x (e / 2) \ T" by auto - from Rats_dense_in_real[OF `0 < e / 2`] obtain r where "r \ \" "0 < r" "r < e / 2" by auto + fix T x + assume T: "open T" "x \ T" and x: "x \ s" + from openE[OF T] obtain e where "0 < e" "ball x e \ T" + by auto + then have "0 < e / 2" "ball x (e / 2) \ T" + by auto + from Rats_dense_in_real[OF `0 < e / 2`] obtain r where "r \ \" "0 < r" "r < e / 2" + by auto from f[rule_format, of r] `0 < r` `x \ s` obtain k where "k \ f r" "x \ ball k r" unfolding Union_image_eq by auto - from `r \ \` `0 < r` `k \ f r` have "ball k r \ K" by (auto simp: K_def) + from `r \ \` `0 < r` `k \ f r` have "ball k r \ K" + by (auto simp: K_def) then show "\b\K. x \ b \ b \ s \ T" proof (rule bexI[rotated], safe) - fix y assume "y \ ball k r" + fix y + assume "y \ ball k r" with `r < e / 2` `x \ ball k r` have "dist x y < e" by (intro dist_double[where x = k and d=e]) (auto simp: dist_commute) - with `ball x e \ T` show "y \ T" by auto - qed (rule `x \ ball k r`) + with `ball x e \ T` show "y \ T" + by auto + next + show "x \ ball k r" by fact + qed qed qed @@ -3433,18 +3623,20 @@ lemma compact_eq_bolzano_weierstrass: fixes s :: "'a::metric_space set" - shows "compact s \ (\t. infinite t \ t \ s --> (\x \ s. x islimpt t))" (is "?lhs = ?rhs") + shows "compact s \ (\t. infinite t \ t \ s --> (\x \ s. x islimpt t))" + (is "?lhs = ?rhs") proof assume ?lhs - thus ?rhs using heine_borel_imp_bolzano_weierstrass[of s] by auto + then show ?rhs + using heine_borel_imp_bolzano_weierstrass[of s] by auto next assume ?rhs - thus ?lhs + then show ?lhs unfolding compact_eq_seq_compact_metric by (rule bolzano_weierstrass_imp_seq_compact) qed lemma bolzano_weierstrass_imp_bounded: - "\t. infinite t \ t \ s --> (\x \ s. x islimpt t) \ bounded s" + "\t. infinite t \ t \ s \ (\x \ s. x islimpt t) \ bounded s" using compact_imp_bounded unfolding compact_eq_bolzano_weierstrass . text {* @@ -3458,13 +3650,18 @@ lemma bounded_closed_imp_seq_compact: fixes s::"'a::heine_borel set" - assumes "bounded s" and "closed s" shows "seq_compact s" + assumes "bounded s" + and "closed s" + shows "seq_compact s" proof (unfold seq_compact_def, clarify) - fix f :: "nat \ 'a" assume f: "\n. f n \ s" - with `bounded s` have "bounded (range f)" by (auto intro: bounded_subset) + fix f :: "nat \ 'a" + assume f: "\n. f n \ s" + with `bounded s` have "bounded (range f)" + by (auto intro: bounded_subset) obtain l r where r: "subseq r" and l: "((f \ r) ---> l) sequentially" using bounded_imp_convergent_subsequence [OF `bounded (range f)`] by auto - from f have fr: "\n. (f \ r) n \ s" by simp + from f have fr: "\n. (f \ r) n \ s" + by simp have "l \ s" using `closed s` fr l unfolding closed_sequential_limits by blast show "\l\s. \r. subseq r \ ((f \ r) ---> l) sequentially" @@ -3476,12 +3673,12 @@ shows "compact s \ bounded s \ closed s" (is "?lhs = ?rhs") proof assume ?lhs - thus ?rhs + then show ?rhs using compact_imp_closed compact_imp_bounded by blast next assume ?rhs - thus ?lhs + then show ?lhs using bounded_closed_imp_seq_compact[of s] unfolding compact_eq_seq_compact_metric by auto @@ -3514,41 +3711,48 @@ (\e>0. eventually (\n. \i\d. dist (f (r n) \ i) (l \ i) < e) sequentially)" proof safe fix d :: "'a set" - assume d: "d \ Basis" - with finite_Basis have "finite d" by (blast intro: finite_subset) + assume d: "d \ Basis" + with finite_Basis have "finite d" + by (blast intro: finite_subset) from this d show "\l::'a. \r. subseq r \ (\e>0. eventually (\n. \i\d. dist (f (r n) \ i) (l \ i) < e) sequentially)" proof (induct d) case empty - thus ?case unfolding subseq_def by auto + then show ?case + unfolding subseq_def by auto next case (insert k d) - have k[intro]:"k\Basis" using insert by auto - have s': "bounded ((\x. x \ k) ` range f)" using `bounded (range f)` + have k[intro]: "k \ Basis" + using insert by auto + have s': "bounded ((\x. x \ k) ` range f)" + using `bounded (range f)` by (auto intro!: bounded_linear_image bounded_linear_inner_left) - obtain l1::"'a" and r1 where r1:"subseq r1" and - lr1:"\e>0. eventually (\n. \i\d. dist (f (r1 n) \ i) (l1 \ i) < e) sequentially" + obtain l1::"'a" and r1 where r1: "subseq r1" + and lr1: "\e > 0. eventually (\n. \i\d. dist (f (r1 n) \ i) (l1 \ i) < e) sequentially" using insert(3) using insert(4) by auto - have f': "\n. f (r1 n) \ k \ (\x. x \ k) ` range f" by simp + have f': "\n. f (r1 n) \ k \ (\x. x \ k) ` range f" + by simp have "bounded (range (\i. f (r1 i) \ k))" by (metis (lifting) bounded_subset f' image_subsetI s') then obtain l2 r2 where r2:"subseq r2" and lr2:"((\i. f (r1 (r2 i)) \ k) ---> l2) sequentially" - using bounded_imp_convergent_subsequence[of "\i. f (r1 i) \ k"] by (auto simp: o_def) - def r \ "r1 \ r2" have r:"subseq r" + using bounded_imp_convergent_subsequence[of "\i. f (r1 i) \ k"] + by (auto simp: o_def) + def r \ "r1 \ r2" + have r:"subseq r" using r1 and r2 unfolding r_def o_def subseq_def by auto moreover def l \ "(\i\Basis. (if i = k then l2 else l1\i) *\<^sub>R i)::'a" { fix e::real - assume "e>0" - from lr1 `e>0` have N1:"eventually (\n. \i\d. dist (f (r1 n) \ i) (l1 \ i) < e) sequentially" + assume "e > 0" + from lr1 `e > 0` have N1: "eventually (\n. \i\d. dist (f (r1 n) \ i) (l1 \ i) < e) sequentially" by blast - from lr2 `e>0` have N2:"eventually (\n. dist (f (r1 (r2 n)) \ k) l2 < e) sequentially" + from lr2 `e > 0` have N2:"eventually (\n. dist (f (r1 (r2 n)) \ k) l2 < e) sequentially" by (rule tendstoD) from r2 N1 have N1': "eventually (\n. \i\d. dist (f (r1 (r2 n)) \ i) (l1 \ i) < e) sequentially" by (rule eventually_subseq) have "eventually (\n. \i\(insert k d). dist (f (r n) \ i) (l \ i) < e) sequentially" - using N1' N2 + using N1' N2 by eventually_elim (insert insert.prems, auto simp: l_def r_def o_def) } ultimately show ?case by auto @@ -3564,8 +3768,8 @@ using compact_lemma [OF f] by blast { fix e::real - assume "e>0" - hence "0 < e / real_of_nat DIM('a)" + assume "e > 0" + then have "e / real_of_nat DIM('a) > 0" by (auto intro!: divide_pos_pos DIM_positive) with l have "eventually (\n. \i\Basis. dist (f (r n) \ i) (l \ i) < e / (real_of_nat DIM('a))) sequentially" by simp @@ -3576,18 +3780,20 @@ have "dist (f (r n)) l \ (\i\Basis. dist (f (r n) \ i) (l \ i))" apply (subst euclidean_dist_l2) using zero_le_dist - by (rule setL2_le_setsum) + apply (rule setL2_le_setsum) + done also have "\ < (\i\(Basis::'a set). e / (real_of_nat DIM('a)))" apply (rule setsum_strict_mono) using n - by auto - finally have "dist (f (r n)) l < e" + apply auto + done + finally have "dist (f (r n)) l < e" by auto } ultimately have "eventually (\n. dist (f (r n)) l < e) sequentially" by (rule eventually_elim1) } - hence *: "((f \ r) ---> l) sequentially" + then have *: "((f \ r) ---> l) sequentially" unfolding o_def tendsto_iff by simp with r show "\l r. subseq r \ ((f \ r) ---> l) sequentially" by auto @@ -3619,13 +3825,13 @@ proof fix f :: "nat \ 'a \ 'b" assume f: "bounded (range f)" - from f have s1: "bounded (range (fst \ f))" unfolding image_comp by (rule bounded_fst) + from f have s1: "bounded (range (fst \ f))" + unfolding image_comp by (rule bounded_fst) obtain l1 r1 where r1: "subseq r1" and l1: "(\n. fst (f (r1 n))) ----> l1" using bounded_imp_convergent_subsequence [OF s1] unfolding o_def by fast from f have s2: "bounded (range (snd \ f \ r1))" by (auto simp add: image_comp intro: bounded_snd bounded_subset) - obtain l2 r2 where r2: "subseq r2" - and l2: "((\n. snd (f (r1 (r2 n)))) ---> l2) sequentially" + obtain l2 r2 where r2: "subseq r2" and l2: "((\n. snd (f (r1 (r2 n)))) ---> l2) sequentially" using bounded_imp_convergent_subsequence [OF s2] unfolding o_def by fast have l1': "((\n. fst (f (r1 (r2 n)))) ---> l1) sequentially" @@ -3656,36 +3862,42 @@ note lr' = seq_suble [OF lr(2)] { - fix e::real - assume "e>0" + fix e :: real + assume "e > 0" from as(2) obtain N where N:"\m n. N \ m \ N \ n \ dist (f m) (f n) < e/2" unfolding cauchy_def - using `e>0` apply (erule_tac x="e/2" in allE) + using `e > 0` + apply (erule_tac x="e/2" in allE) apply auto done from lr(3)[unfolded LIMSEQ_def, THEN spec[where x="e/2"]] - obtain M where M:"\n\M. dist ((f \ r) n) l < e/2" using `e>0` by auto + obtain M where M:"\n\M. dist ((f \ r) n) l < e/2" + using `e > 0` by auto { - fix n::nat - assume n:"n \ max N M" - have "dist ((f \ r) n) l < e/2" using n M by auto - moreover have "r n \ N" using lr'[of n] n by auto - hence "dist (f n) ((f \ r) n) < e / 2" using N using n by auto + fix n :: nat + assume n: "n \ max N M" + have "dist ((f \ r) n) l < e/2" + using n M by auto + moreover have "r n \ N" + using lr'[of n] n by auto + then have "dist (f n) ((f \ r) n) < e / 2" + using N and n by auto ultimately have "dist (f n) l < e" - using dist_triangle_half_r[of "f (r n)" "f n" e l] by (auto simp add: dist_commute) + using dist_triangle_half_r[of "f (r n)" "f n" e l] + by (auto simp add: dist_commute) } - hence "\N. \n\N. dist (f n) l < e" by blast + then have "\N. \n\N. dist (f n) l < e" by blast } - hence "\l\s. (f ---> l) sequentially" using `l\s` + then have "\l\s. (f ---> l) sequentially" using `l\s` unfolding LIMSEQ_def by auto } - thus ?thesis unfolding complete_def by auto + then show ?thesis unfolding complete_def by auto qed lemma nat_approx_posE: fixes e::real assumes "0 < e" - obtains n::nat where "1 / (Suc n) < e" + obtains n :: nat where "1 / (Suc n) < e" proof atomize_elim have " 1 / real (Suc (nat (ceiling (1/e)))) < 1 / (ceiling (1/e))" by (rule divide_strict_left_mono) (auto intro!: mult_pos_pos simp: `0 < e`) @@ -3705,18 +3917,22 @@ show "compact s" proof cases - assume "s = {}" thus "compact s" by (simp add: compact_def) + assume "s = {}" + then show "compact s" by (simp add: compact_def) next assume "s \ {}" show ?thesis unfolding compact_def proof safe - fix f :: "nat \ 'a" assume f: "\n. f n \ s" - + fix f :: "nat \ 'a" + assume f: "\n. f n \ s" + def e \ "\n. 1 / (2 * Suc n)" then have [simp]: "\n. 0 < e n" by auto def B \ "\n U. SOME b. infinite {n. f n \ b} \ (\x. b \ ball x (e n) \ U)" - { fix n U assume "infinite {n. f n \ U}" + { + fix n U + assume "infinite {n. f n \ U}" then have "\b\k (e n). infinite {i\{n. f n \ U}. f i \ ball b (e n)}" using k f by (intro pigeonhole_infinite_rel) (auto simp: subset_eq) then guess a .. @@ -3724,12 +3940,16 @@ by (intro exI[of _ "ball a (e n) \ U"] exI[of _ a]) (auto simp: ac_simps) from someI_ex[OF this] have "infinite {i. f i \ B n U}" "\x. B n U \ ball x (e n) \ U" - unfolding B_def by auto } + unfolding B_def by auto + } note B = this def F \ "nat_rec (B 0 UNIV) B" - { fix n have "infinite {i. f i \ F n}" - by (induct n) (auto simp: F_def B) } + { + fix n + have "infinite {i. f i \ F n}" + by (induct n) (auto simp: F_def B) + } then have F: "\n. \x. F (Suc n) \ ball x (e n) \ F n" using B by (simp add: F_def) then have F_dec: "\m n. m \ n \ F n \ F m" @@ -3751,13 +3971,17 @@ moreover have "\i. (f \ t) i \ s" using f by auto moreover - { fix n have "(f \ t) n \ F n" - by (cases n) (simp_all add: t_def sel) } + { + fix n + have "(f \ t) n \ F n" + by (cases n) (simp_all add: t_def sel) + } note t = this have "Cauchy (f \ t)" proof (safe intro!: metric_CauchyI exI elim!: nat_approx_posE) - fix r :: real and N n m assume "1 / Suc N < r" "Suc N \ n" "Suc N \ m" + fix r :: real and N n m + assume "1 / Suc N < r" "Suc N \ n" "Suc N \ m" then have "(f \ t) n \ F (Suc N)" "(f \ t) m \ F (Suc N)" "2 * e N < r" using F_dec t by (auto simp: e_def field_simps real_of_nat_Suc) with F[of N] obtain x where "dist x ((f \ t) n) < e N" "dist x ((f \ t) m) < e N" @@ -3774,39 +3998,44 @@ qed (metis compact_imp_complete compact_imp_seq_compact seq_compact_imp_totally_bounded) lemma cauchy: "Cauchy s \ (\e>0.\ N::nat. \n\N. dist(s n)(s N) < e)" (is "?lhs = ?rhs") -proof- - { assume ?rhs - { fix e::real +proof - + { + assume ?rhs + { + fix e::real assume "e>0" with `?rhs` obtain N where N:"\n\N. dist (s n) (s N) < e/2" by (erule_tac x="e/2" in allE) auto - { fix n m + { + fix n m assume nm:"N \ m \ N \ n" - hence "dist (s m) (s n) < e" using N + then have "dist (s m) (s n) < e" using N using dist_triangle_half_l[of "s m" "s N" "e" "s n"] by blast } - hence "\N. \m n. N \ m \ N \ n \ dist (s m) (s n) < e" + then have "\N. \m n. N \ m \ N \ n \ dist (s m) (s n) < e" by blast } - hence ?lhs + then have ?lhs unfolding cauchy_def by blast } - thus ?thesis + then show ?thesis unfolding cauchy_def using dist_triangle_half_l by blast qed -lemma cauchy_imp_bounded: assumes "Cauchy s" shows "bounded (range s)" -proof- - from assms obtain N::nat where "\m n. N \ m \ N \ n \ dist (s m) (s n) < 1" +lemma cauchy_imp_bounded: + assumes "Cauchy s" + shows "bounded (range s)" +proof - + from assms obtain N :: nat where "\m n. N \ m \ N \ n \ dist (s m) (s n) < 1" unfolding cauchy_def apply (erule_tac x= 1 in allE) apply auto done - hence N:"\n. N \ n \ dist (s N) (s n) < 1" by auto + then have N:"\n. N \ n \ dist (s N) (s n) < 1" by auto moreover have "bounded (s ` {0..N})" using finite_imp_bounded[of "s ` {1..N}"] by auto @@ -3825,11 +4054,11 @@ instance heine_borel < complete_space proof fix f :: "nat \ 'a" assume "Cauchy f" - hence "bounded (range f)" + then have "bounded (range f)" by (rule cauchy_imp_bounded) - hence "compact (closure (range f))" + then have "compact (closure (range f))" unfolding compact_eq_bounded_closed by auto - hence "complete (closure (range f))" + then have "complete (closure (range f))" by (rule compact_imp_complete) moreover have "\n. f n \ closure (range f)" using closure_subset [of "range f"] by auto @@ -3842,29 +4071,36 @@ instance euclidean_space \ banach .. lemma complete_univ: "complete (UNIV :: 'a::complete_space set)" -proof(simp add: complete_def, rule, rule) - fix f :: "nat \ 'a" assume "Cauchy f" - hence "convergent f" by (rule Cauchy_convergent) - thus "\l. f ----> l" unfolding convergent_def . -qed - -lemma complete_imp_closed: assumes "complete s" shows "closed s" +proof (simp add: complete_def, rule, rule) + fix f :: "nat \ 'a" + assume "Cauchy f" + then have "convergent f" by (rule Cauchy_convergent) + then show "\l. f ----> l" unfolding convergent_def . +qed + +lemma complete_imp_closed: + assumes "complete s" + shows "closed s" proof - - { fix x assume "x islimpt s" + { + fix x + assume "x islimpt s" then obtain f where f: "\n. f n \ s - {x}" "(f ---> x) sequentially" unfolding islimpt_sequential by auto then obtain l where l: "l\s" "(f ---> l) sequentially" using `complete s`[unfolded complete_def] using LIMSEQ_imp_Cauchy[of f x] by auto - hence "x \ s" using tendsto_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto + then have "x \ s" + using tendsto_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto } - thus "closed s" unfolding closed_limpt by auto + then show "closed s" unfolding closed_limpt by auto qed lemma complete_eq_closed: fixes s :: "'a::complete_space set" shows "complete s \ closed s" (is "?lhs = ?rhs") proof - assume ?lhs thus ?rhs by (rule complete_imp_closed) + assume ?lhs + then show ?rhs by (rule complete_imp_closed) next assume ?rhs { @@ -3872,11 +4108,11 @@ assume as:"\n::nat. f n \ s" "Cauchy f" then obtain l where "(f ---> l) sequentially" using complete_univ[unfolded complete_def, THEN spec[where x=f]] by auto - hence "\l\s. (f ---> l) sequentially" + then have "\l\s. (f ---> l) sequentially" using `?rhs`[unfolded closed_sequential_limits, THEN spec[where x=f], THEN spec[where x=l]] using as(1) by auto } - thus ?lhs unfolding complete_def by auto + then show ?lhs unfolding complete_def by auto qed lemma convergent_eq_cauchy: @@ -3933,56 +4169,94 @@ apply blast done - { fix n::nat - { fix e::real assume "e>0" + { + fix n :: nat + { + fix e :: real + assume "e>0" with lr(3) obtain N where N:"\m\N. dist ((x \ r) m) l < e" unfolding LIMSEQ_def by auto - hence "dist ((x \ r) (max N n)) l < e" by auto + then have "dist ((x \ r) (max N n)) l < e" by auto moreover - have "r (max N n) \ n" using lr(2) using seq_suble[of r "max N n"] by auto - hence "(x \ r) (max N n) \ s n" - using x apply (erule_tac x=n in allE) - using x apply (erule_tac x="r (max N n)" in allE) - using assms(3) apply (erule_tac x=n in allE) + have "r (max N n) \ n" using lr(2) using seq_suble[of r "max N n"] + by auto + then have "(x \ r) (max N n) \ s n" + using x + apply (erule_tac x=n in allE) + using x + apply (erule_tac x="r (max N n)" in allE) + using assms(3) + apply (erule_tac x=n in allE) apply (erule_tac x="r (max N n)" in allE) apply auto done - ultimately have "\y\s n. dist y l < e" by auto + ultimately have "\y\s n. dist y l < e" + by auto } - hence "l \ s n" using closed_approachable[of "s n" l] assms(1) by blast + then have "l \ s n" + using closed_approachable[of "s n" l] assms(1) by blast } - thus ?thesis by auto + then show ?thesis by auto qed text {* Decreasing case does not even need compactness, just completeness. *} lemma decreasing_closed_nest: - assumes "\n. closed(s n)" - "\n. (s n \ {})" - "\m n. m \ n --> s n \ s m" - "\e>0. \n. \x \ (s n). \ y \ (s n). dist x y < e" + assumes + "\n. closed(s n)" + "\n. (s n \ {})" + "\m n. m \ n --> s n \ s m" + "\e>0. \n. \x \ (s n). \ y \ (s n). dist x y < e" shows "\a::'a::complete_space. \n::nat. a \ s n" proof- - have "\n. \ x. x\s n" using assms(2) by auto - hence "\t. \n. t n \ s n" using choice[of "\ n x. x \ s n"] by auto + have "\n. \ x. x\s n" + using assms(2) by auto + then have "\t. \n. t n \ s n" + using choice[of "\ n x. x \ s n"] by auto then obtain t where t: "\n. t n \ s n" by auto - { fix e::real assume "e>0" - then obtain N where N:"\x\s N. \y\s N. dist x y < e" using assms(4) by auto - { fix m n ::nat assume "N \ m \ N \ n" - hence "t m \ s N" "t n \ s N" using assms(3) t unfolding subset_eq t by blast+ - hence "dist (t m) (t n) < e" using N by auto + { + fix e :: real + assume "e > 0" + then obtain N where N:"\x\s N. \y\s N. dist x y < e" + using assms(4) by auto + { + fix m n :: nat + assume "N \ m \ N \ n" + then have "t m \ s N" "t n \ s N" + using assms(3) t unfolding subset_eq t by blast+ + then have "dist (t m) (t n) < e" + using N by auto } - hence "\N. \m n. N \ m \ N \ n \ dist (t m) (t n) < e" by auto + then have "\N. \m n. N \ m \ N \ n \ dist (t m) (t n) < e" + by auto } - hence "Cauchy t" unfolding cauchy_def by auto - then obtain l where l:"(t ---> l) sequentially" using complete_univ unfolding complete_def by auto - { fix n::nat - { fix e::real assume "e>0" - then obtain N::nat where N:"\n\N. dist (t n) l < e" using l[unfolded LIMSEQ_def] by auto - have "t (max n N) \ s n" using assms(3) unfolding subset_eq apply(erule_tac x=n in allE) apply (erule_tac x="max n N" in allE) using t by auto - hence "\y\s n. dist y l < e" apply(rule_tac x="t (max n N)" in bexI) using N by auto + then have "Cauchy t" + unfolding cauchy_def by auto + then obtain l where l:"(t ---> l) sequentially" + using complete_univ unfolding complete_def by auto + { + fix n :: nat + { + fix e :: real + assume "e > 0" + then obtain N :: nat where N: "\n\N. dist (t n) l < e" + using l[unfolded LIMSEQ_def] by auto + have "t (max n N) \ s n" + using assms(3) + unfolding subset_eq + apply (erule_tac x=n in allE) + apply (erule_tac x="max n N" in allE) + using t + apply auto + done + then have "\y\s n. dist y l < e" + apply (rule_tac x="t (max n N)" in bexI) + using N + apply auto + done } - hence "l \ s n" using closed_approachable[of "s n" l] assms(1) by auto + then have "l \ s n" + using closed_approachable[of "s n" l] assms(1) by auto } then show ?thesis by auto qed @@ -3991,56 +4265,94 @@ lemma decreasing_closed_nest_sing: fixes s :: "nat \ 'a::complete_space set" - assumes "\n. closed(s n)" - "\n. s n \ {}" - "\m n. m \ n --> s n \ s m" - "\e>0. \n. \x \ (s n). \ y\(s n). dist x y < e" + assumes + "\n. closed(s n)" + "\n. s n \ {}" + "\m n. m \ n --> s n \ s m" + "\e>0. \n. \x \ (s n). \ y\(s n). dist x y < e" shows "\a. \(range s) = {a}" -proof- - obtain a where a:"\n. a \ s n" using decreasing_closed_nest[of s] using assms by auto - { fix b assume b:"b \ \(range s)" - { fix e::real assume "e>0" - hence "dist a b < e" using assms(4 )using b using a by blast +proof - + obtain a where a: "\n. a \ s n" + using decreasing_closed_nest[of s] using assms by auto + { + fix b + assume b: "b \ \(range s)" + { + fix e :: real + assume "e > 0" + then have "dist a b < e" + using assms(4) and b and a by blast } - hence "dist a b = 0" by (metis dist_eq_0_iff dist_nz less_le) + then have "dist a b = 0" + by (metis dist_eq_0_iff dist_nz less_le) } - with a have "\(range s) = {a}" unfolding image_def by auto - thus ?thesis .. + with a have "\(range s) = {a}" + unfolding image_def by auto + then show ?thesis .. qed text{* Cauchy-type criteria for uniform convergence. *} -lemma uniformly_convergent_eq_cauchy: fixes s::"nat \ 'b \ 'a::complete_space" shows - "(\l. \e>0. \N. \n x. N \ n \ P x --> dist(s n x)(l x) < e) \ - (\e>0. \N. \m n x. N \ m \ N \ n \ P x --> dist (s m x) (s n x) < e)" (is "?lhs = ?rhs") -proof(rule) +lemma uniformly_convergent_eq_cauchy: + fixes s::"nat \ 'b \ 'a::complete_space" + shows + "(\l. \e>0. \N. \n x. N \ n \ P x --> dist(s n x)(l x) < e) \ + (\e>0. \N. \m n x. N \ m \ N \ n \ P x --> dist (s m x) (s n x) < e)" + (is "?lhs = ?rhs") +proof assume ?lhs - then obtain l where l:"\e>0. \N. \n x. N \ n \ P x \ dist (s n x) (l x) < e" by auto - { fix e::real assume "e>0" - then obtain N::nat where N:"\n x. N \ n \ P x \ dist (s n x) (l x) < e / 2" using l[THEN spec[where x="e/2"]] by auto - { fix n m::nat and x::"'b" assume "N \ m \ N \ n \ P x" - hence "dist (s m x) (s n x) < e" + then obtain l where l:"\e>0. \N. \n x. N \ n \ P x \ dist (s n x) (l x) < e" + by auto + { + fix e :: real + assume "e > 0" + then obtain N :: nat where N: "\n x. N \ n \ P x \ dist (s n x) (l x) < e / 2" + using l[THEN spec[where x="e/2"]] by auto + { + fix n m :: nat and x :: "'b" + assume "N \ m \ N \ n \ P x" + then have "dist (s m x) (s n x) < e" using N[THEN spec[where x=m], THEN spec[where x=x]] using N[THEN spec[where x=n], THEN spec[where x=x]] - using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto } - hence "\N. \m n x. N \ m \ N \ n \ P x --> dist (s m x) (s n x) < e" by auto } - thus ?rhs by auto + using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto + } + then have "\N. \m n x. N \ m \ N \ n \ P x --> dist (s m x) (s n x) < e" by auto + } + then show ?rhs by auto next assume ?rhs - hence "\x. P x \ Cauchy (\n. s n x)" unfolding cauchy_def apply auto by (erule_tac x=e in allE)auto - then obtain l where l:"\x. P x \ ((\n. s n x) ---> l x) sequentially" unfolding convergent_eq_cauchy[THEN sym] - using choice[of "\x l. P x \ ((\n. s n x) ---> l) sequentially"] by auto - { fix e::real assume "e>0" + then have "\x. P x \ Cauchy (\n. s n x)" + unfolding cauchy_def + apply auto + apply (erule_tac x=e in allE) + apply auto + done + then obtain l where l: "\x. P x \ ((\n. s n x) ---> l x) sequentially" + unfolding convergent_eq_cauchy[THEN sym] + using choice[of "\x l. P x \ ((\n. s n x) ---> l) sequentially"] + by auto + { + fix e :: real + assume "e > 0" then obtain N where N:"\m n x. N \ m \ N \ n \ P x \ dist (s m x) (s n x) < e/2" using `?rhs`[THEN spec[where x="e/2"]] by auto - { fix x assume "P x" + { + fix x + assume "P x" then obtain M where M:"\n\M. dist (s n x) (l x) < e/2" - using l[THEN spec[where x=x], unfolded LIMSEQ_def] using `e>0` by(auto elim!: allE[where x="e/2"]) - fix n::nat assume "n\N" - hence "dist(s n x)(l x) < e" using `P x`and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]] - using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"] by (auto simp add: dist_commute) } - hence "\N. \n x. N \ n \ P x \ dist(s n x)(l x) < e" by auto } - thus ?lhs by auto + using l[THEN spec[where x=x], unfolded LIMSEQ_def] and `e > 0` + by (auto elim!: allE[where x="e/2"]) + fix n :: nat + assume "n \ N" + then have "dist(s n x)(l x) < e" + using `P x`and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]] + using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"] + by (auto simp add: dist_commute) + } + then have "\N. \n x. N \ n \ P x \ dist(s n x)(l x) < e" + by auto + } + then show ?lhs by auto qed lemma uniformly_cauchy_imp_uniformly_convergent: @@ -4048,13 +4360,17 @@ assumes "\e>0.\N. \m (n::nat) x. N \ m \ N \ n \ P x --> dist(s m x)(s n x) < e" "\x. P x --> (\e>0. \N. \n. N \ n --> dist(s n x)(l x) < e)" shows "\e>0. \N. \n x. N \ n \ P x --> dist(s n x)(l x) < e" -proof- +proof - obtain l' where l:"\e>0. \N. \n x. N \ n \ P x \ dist (s n x) (l' x) < e" using assms(1) unfolding uniformly_convergent_eq_cauchy[THEN sym] by auto moreover - { fix x assume "P x" - hence "l x = l' x" using tendsto_unique[OF trivial_limit_sequentially, of "\n. s n x" "l x" "l' x"] - using l and assms(2) unfolding LIMSEQ_def by blast } + { + fix x + assume "P x" + then have "l x = l' x" + using tendsto_unique[OF trivial_limit_sequentially, of "\n. s n x" "l x" "l' x"] + using l and assms(2) unfolding LIMSEQ_def by blast + } ultimately show ?thesis by auto qed @@ -4066,42 +4382,86 @@ lemma continuous_within_eps_delta: "continuous (at x within s) f \ (\e>0. \d>0. \x'\ s. dist x' x < d --> dist (f x') (f x) < e)" unfolding continuous_within and Lim_within - apply auto unfolding dist_nz[THEN sym] apply(auto del: allE elim!:allE) apply(rule_tac x=d in exI) by auto - -lemma continuous_at_eps_delta: "continuous (at x) f \ (\e>0. \d>0. - \x'. dist x' x < d --> dist(f x')(f x) < e)" + apply auto + unfolding dist_nz[THEN sym] + apply (auto del: allE elim!:allE) + apply(rule_tac x=d in exI) + apply auto + done + +lemma continuous_at_eps_delta: + "continuous (at x) f \ (\e > 0. \d > 0. \x'. dist x' x < d \ dist (f x') (f x) < e)" using continuous_within_eps_delta [of x UNIV f] by simp text{* Versions in terms of open balls. *} lemma continuous_within_ball: - "continuous (at x within s) f \ (\e>0. \d>0. - f ` (ball x d \ s) \ ball (f x) e)" (is "?lhs = ?rhs") + "continuous (at x within s) f \ + (\e > 0. \d > 0. f ` (ball x d \ s) \ ball (f x) e)" + (is "?lhs = ?rhs") proof assume ?lhs - { fix e::real assume "e>0" + { + fix e :: real + assume "e > 0" then obtain d where d: "d>0" "\xa\s. 0 < dist xa x \ dist xa x < d \ dist (f xa) (f x) < e" using `?lhs`[unfolded continuous_within Lim_within] by auto - { fix y assume "y\f ` (ball x d \ s)" - hence "y \ ball (f x) e" using d(2) unfolding dist_nz[THEN sym] - apply (auto simp add: dist_commute) apply(erule_tac x=xa in ballE) apply auto using `e>0` by auto + { + fix y + assume "y \ f ` (ball x d \ s)" + then have "y \ ball (f x) e" + using d(2) + unfolding dist_nz[THEN sym] + apply (auto simp add: dist_commute) + apply (erule_tac x=xa in ballE) + apply auto + using `e > 0` + apply auto + done } - hence "\d>0. f ` (ball x d \ s) \ ball (f x) e" using `d>0` unfolding subset_eq ball_def by (auto simp add: dist_commute) } - thus ?rhs by auto + then have "\d>0. f ` (ball x d \ s) \ ball (f x) e" + using `d > 0` + unfolding subset_eq ball_def by (auto simp add: dist_commute) + } + then show ?rhs by auto next - assume ?rhs thus ?lhs unfolding continuous_within Lim_within ball_def subset_eq - apply (auto simp add: dist_commute) apply(erule_tac x=e in allE) by auto + assume ?rhs + then show ?lhs + unfolding continuous_within Lim_within ball_def subset_eq + apply (auto simp add: dist_commute) + apply (erule_tac x=e in allE) + apply auto + done qed lemma continuous_at_ball: "continuous (at x) f \ (\e>0. \d>0. f ` (ball x d) \ ball (f x) e)" (is "?lhs = ?rhs") proof - assume ?lhs thus ?rhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball - apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x=xa in allE) apply (auto simp add: dist_commute dist_nz) - unfolding dist_nz[THEN sym] by auto + assume ?lhs + then show ?rhs + unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball + apply auto + apply (erule_tac x=e in allE) + apply auto + apply (rule_tac x=d in exI) + apply auto + apply (erule_tac x=xa in allE) + apply (auto simp add: dist_commute dist_nz) + unfolding dist_nz[THEN sym] + apply auto + done next - assume ?rhs thus ?lhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball - apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x="f xa" in allE) by (auto simp add: dist_commute dist_nz) + assume ?rhs + then show ?lhs + unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball + apply auto + apply (erule_tac x=e in allE) + apply auto + apply (rule_tac x=d in exI) + apply auto + apply (erule_tac x="f xa" in allE) + apply (auto simp add: dist_commute dist_nz) + done qed text{* Define setwise continuity in terms of limits within the set. *} @@ -4109,27 +4469,25 @@ lemma continuous_on_iff: "continuous_on s f \ (\x\s. \e>0. \d>0. \x'\s. dist x' x < d \ dist (f x') (f x) < e)" -unfolding continuous_on_def Lim_within -apply (intro ball_cong [OF refl] all_cong ex_cong) -apply (rename_tac y, case_tac "y = x", simp) -apply (simp add: dist_nz) -done - -definition - uniformly_continuous_on :: - "'a set \ ('a::metric_space \ 'b::metric_space) \ bool" -where - "uniformly_continuous_on s f \ + unfolding continuous_on_def Lim_within + apply (intro ball_cong [OF refl] all_cong ex_cong) + apply (rename_tac y, case_tac "y = x") + apply simp + apply (simp add: dist_nz) + done + +definition uniformly_continuous_on :: "'a set \ ('a::metric_space \ 'b::metric_space) \ bool" + where "uniformly_continuous_on s f \ (\e>0. \d>0. \x\s. \x'\s. dist x' x < d \ dist (f x') (f x) < e)" text{* Some simple consequential lemmas. *} lemma uniformly_continuous_imp_continuous: - " uniformly_continuous_on s f ==> continuous_on s f" + "uniformly_continuous_on s f \ continuous_on s f" unfolding uniformly_continuous_on_def continuous_on_iff by blast lemma continuous_at_imp_continuous_within: - "continuous (at x) f ==> continuous (at x within s) f" + "continuous (at x) f \ continuous (at x within s) f" unfolding continuous_within continuous_at using Lim_at_within by auto lemma Lim_trivial_limit: "trivial_limit net \ (f ---> l) net" @@ -4138,14 +4496,15 @@ lemmas continuous_on = continuous_on_def -- "legacy theorem name" lemma continuous_within_subset: - "continuous (at x within s) f \ t \ s - ==> continuous (at x within t) f" + "continuous (at x within s) f \ t \ s \ continuous (at x within t) f" unfolding continuous_within by(metis tendsto_within_subset) lemma continuous_on_interior: - shows "continuous_on s f \ x \ interior s \ continuous (at x) f" - by (erule interiorE, drule (1) continuous_on_subset, - simp add: continuous_on_eq_continuous_at) + "continuous_on s f \ x \ interior s \ continuous (at x) f" + apply (erule interiorE) + apply (drule (1) continuous_on_subset) + apply (simp add: continuous_on_eq_continuous_at) + done lemma continuous_on_eq: "(\x \ s. f x = g x) \ continuous_on s f \ continuous_on s g" @@ -4157,25 +4516,32 @@ lemma continuous_within_sequentially: fixes f :: "'a::metric_space \ 'b::topological_space" shows "continuous (at a within s) f \ - (\x. (\n::nat. x n \ s) \ (x ---> a) sequentially - --> ((f o x) ---> f a) sequentially)" (is "?lhs = ?rhs") + (\x. (\n::nat. x n \ s) \ (x ---> a) sequentially + \ ((f o x) ---> f a) sequentially)" + (is "?lhs = ?rhs") proof assume ?lhs - { fix x::"nat \ 'a" assume x:"\n. x n \ s" "\e>0. eventually (\n. dist (x n) a < e) sequentially" - fix T::"'b set" assume "open T" and "f a \ T" + { + fix x :: "nat \ 'a" + assume x: "\n. x n \ s" "\e>0. eventually (\n. dist (x n) a < e) sequentially" + fix T :: "'b set" + assume "open T" and "f a \ T" with `?lhs` obtain d where "d>0" and d:"\x\s. 0 < dist x a \ dist x a < d \ f x \ T" unfolding continuous_within tendsto_def eventually_at by (auto simp: dist_nz) have "eventually (\n. dist (x n) a < d) sequentially" using x(2) `d>0` by simp - hence "eventually (\n. (f \ x) n \ T) sequentially" + then have "eventually (\n. (f \ x) n \ T) sequentially" proof eventually_elim - case (elim n) thus ?case + case (elim n) + then show ?case using d x(1) `f a \ T` unfolding dist_nz[THEN sym] by auto qed } - thus ?rhs unfolding tendsto_iff unfolding tendsto_def by simp + then show ?rhs + unfolding tendsto_iff tendsto_def by simp next - assume ?rhs thus ?lhs + assume ?rhs + then show ?lhs unfolding continuous_within tendsto_def [where l="f a"] by (simp add: sequentially_imp_eventually_within) qed @@ -4192,9 +4558,17 @@ (\x. \a \ s. (\n. x(n) \ s) \ (x ---> a) sequentially --> ((f o x) ---> f(a)) sequentially)" (is "?lhs = ?rhs") proof - assume ?rhs thus ?lhs using continuous_within_sequentially[of _ s f] unfolding continuous_on_eq_continuous_within by auto + assume ?rhs + then show ?lhs + using continuous_within_sequentially[of _ s f] + unfolding continuous_on_eq_continuous_within + by auto next - assume ?lhs thus ?rhs unfolding continuous_on_eq_continuous_within using continuous_within_sequentially[of _ s f] by auto + assume ?lhs + then show ?rhs + unfolding continuous_on_eq_continuous_within + using continuous_within_sequentially[of _ s f] + by auto qed lemma uniformly_continuous_on_sequentially: @@ -4203,67 +4577,108 @@ \ ((\n. dist (f(x n)) (f(y n))) ---> 0) sequentially)" (is "?lhs = ?rhs") proof assume ?lhs - { fix x y assume x:"\n. x n \ s" and y:"\n. y n \ s" and xy:"((\n. dist (x n) (y n)) ---> 0) sequentially" - { fix e::real assume "e>0" - then obtain d where "d>0" and d:"\x\s. \x'\s. dist x' x < d \ dist (f x') (f x) < e" + { + fix x y + assume x: "\n. x n \ s" + and y: "\n. y n \ s" + and xy: "((\n. dist (x n) (y n)) ---> 0) sequentially" + { + fix e :: real + assume "e > 0" + then obtain d where "d > 0" and d: "\x\s. \x'\s. dist x' x < d \ dist (f x') (f x) < e" using `?lhs`[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto - obtain N where N:"\n\N. dist (x n) (y n) < d" using xy[unfolded LIMSEQ_def dist_norm] and `d>0` by auto - { fix n assume "n\N" - hence "dist (f (x n)) (f (y n)) < e" - using N[THEN spec[where x=n]] using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]] using x and y - unfolding dist_commute by simp } - hence "\N. \n\N. dist (f (x n)) (f (y n)) < e" by auto } - hence "((\n. dist (f(x n)) (f(y n))) ---> 0) sequentially" unfolding LIMSEQ_def and dist_real_def by auto } - thus ?rhs by auto + obtain N where N: "\n\N. dist (x n) (y n) < d" + using xy[unfolded LIMSEQ_def dist_norm] and `d>0` by auto + { + fix n + assume "n\N" + then have "dist (f (x n)) (f (y n)) < e" + using N[THEN spec[where x=n]] + using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]] + using x and y + unfolding dist_commute + by simp + } + then have "\N. \n\N. dist (f (x n)) (f (y n)) < e" + by auto + } + then have "((\n. dist (f(x n)) (f(y n))) ---> 0) sequentially" + unfolding LIMSEQ_def and dist_real_def by auto + } + then show ?rhs by auto next assume ?rhs - { assume "\ ?lhs" - then obtain e where "e>0" "\d>0. \x\s. \x'\s. dist x' x < d \ \ dist (f x') (f x) < e" unfolding uniformly_continuous_on_def by auto - then obtain fa where fa:"\x. 0 < x \ fst (fa x) \ s \ snd (fa x) \ s \ dist (fst (fa x)) (snd (fa x)) < x \ \ dist (f (fst (fa x))) (f (snd (fa x))) < e" - using choice[of "\d x. d>0 \ fst x \ s \ snd x \ s \ dist (snd x) (fst x) < d \ \ dist (f (snd x)) (f (fst x)) < e"] unfolding Bex_def + { + assume "\ ?lhs" + then obtain e where "e > 0" "\d>0. \x\s. \x'\s. dist x' x < d \ \ dist (f x') (f x) < e" + unfolding uniformly_continuous_on_def by auto + then obtain fa where fa: + "\x. 0 < x \ fst (fa x) \ s \ snd (fa x) \ s \ dist (fst (fa x)) (snd (fa x)) < x \ \ dist (f (fst (fa x))) (f (snd (fa x))) < e" + using choice[of "\d x. d>0 \ fst x \ s \ snd x \ s \ dist (snd x) (fst x) < d \ \ dist (f (snd x)) (f (fst x)) < e"] + unfolding Bex_def by (auto simp add: dist_commute) def x \ "\n::nat. fst (fa (inverse (real n + 1)))" def y \ "\n::nat. snd (fa (inverse (real n + 1)))" - have xyn:"\n. x n \ s \ y n \ s" and xy0:"\n. dist (x n) (y n) < inverse (real n + 1)" and fxy:"\n. \ dist (f (x n)) (f (y n)) < e" - unfolding x_def and y_def using fa by auto - { fix e::real assume "e>0" - then obtain N::nat where "N \ 0" and N:"0 < inverse (real N) \ inverse (real N) < e" unfolding real_arch_inv[of e] by auto - { fix n::nat assume "n\N" - hence "inverse (real n + 1) < inverse (real N)" using real_of_nat_ge_zero and `N\0` by auto + have xyn: "\n. x n \ s \ y n \ s" + and xy0: "\n. dist (x n) (y n) < inverse (real n + 1)" + and fxy:"\n. \ dist (f (x n)) (f (y n)) < e" + unfolding x_def and y_def using fa + by auto + { + fix e :: real + assume "e > 0" + then obtain N :: nat where "N \ 0" and N: "0 < inverse (real N) \ inverse (real N) < e" + unfolding real_arch_inv[of e] by auto + { + fix n :: nat + assume "n \ N" + then have "inverse (real n + 1) < inverse (real N)" + using real_of_nat_ge_zero and `N\0` by auto also have "\ < e" using N by auto finally have "inverse (real n + 1) < e" by auto - hence "dist (x n) (y n) < e" using xy0[THEN spec[where x=n]] by auto } - hence "\N. \n\N. dist (x n) (y n) < e" by auto } - hence "\e>0. \N. \n\N. dist (f (x n)) (f (y n)) < e" using `?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn unfolding LIMSEQ_def dist_real_def by auto - hence False using fxy and `e>0` by auto } - thus ?lhs unfolding uniformly_continuous_on_def by blast + then have "dist (x n) (y n) < e" + using xy0[THEN spec[where x=n]] by auto + } + then have "\N. \n\N. dist (x n) (y n) < e" by auto + } + then have "\e>0. \N. \n\N. dist (f (x n)) (f (y n)) < e" + using `?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn + unfolding LIMSEQ_def dist_real_def by auto + then have False using fxy and `e>0` by auto + } + then show ?lhs + unfolding uniformly_continuous_on_def by blast qed text{* The usual transformation theorems. *} lemma continuous_transform_within: fixes f g :: "'a::metric_space \ 'b::topological_space" - assumes "0 < d" "x \ s" "\x' \ s. dist x' x < d --> f x' = g x'" - "continuous (at x within s) f" + assumes "0 < d" + and "x \ s" + and "\x' \ s. dist x' x < d --> f x' = g x'" + and "continuous (at x within s) f" shows "continuous (at x within s) g" -unfolding continuous_within + unfolding continuous_within proof (rule Lim_transform_within) show "0 < d" by fact show "\x'\s. 0 < dist x' x \ dist x' x < d \ f x' = g x'" using assms(3) by auto have "f x = g x" using assms(1,2,3) by auto - thus "(f ---> g x) (at x within s)" + then show "(f ---> g x) (at x within s)" using assms(4) unfolding continuous_within by simp qed lemma continuous_transform_at: fixes f g :: "'a::metric_space \ 'b::topological_space" - assumes "0 < d" "\x'. dist x' x < d --> f x' = g x'" - "continuous (at x) f" + assumes "0 < d" + and "\x'. dist x' x < d --> f x' = g x'" + and "continuous (at x) f" shows "continuous (at x) g" using continuous_transform_within [of d x UNIV f g] assms by simp + subsubsection {* Structural rules for pointwise continuity *} lemmas continuous_within_id = continuous_ident @@ -4276,11 +4691,12 @@ using assms unfolding continuous_def by (rule tendsto_infdist) lemma continuous_infnorm[continuous_intros]: - shows "continuous F f \ continuous F (\x. infnorm (f x))" + "continuous F f \ continuous F (\x. infnorm (f x))" unfolding continuous_def by (rule tendsto_infnorm) lemma continuous_inner[continuous_intros]: - assumes "continuous F f" and "continuous F g" + assumes "continuous F f" + and "continuous F g" shows "continuous F (\x. inner (f x) (g x))" using assms unfolding continuous_def by (rule tendsto_inner) @@ -4289,12 +4705,13 @@ subsubsection {* Structural rules for setwise continuity *} lemma continuous_on_infnorm[continuous_on_intros]: - shows "continuous_on s f \ continuous_on s (\x. infnorm (f x))" + "continuous_on s f \ continuous_on s (\x. infnorm (f x))" unfolding continuous_on by (fast intro: tendsto_infnorm) lemma continuous_on_inner[continuous_on_intros]: fixes g :: "'a::topological_space \ 'b::real_inner" - assumes "continuous_on s f" and "continuous_on s g" + assumes "continuous_on s f" + and "continuous_on s g" shows "continuous_on s (\x. inner (f x) (g x))" using bounded_bilinear_inner assms by (rule bounded_bilinear.continuous_on) @@ -4302,32 +4719,36 @@ subsubsection {* Structural rules for uniform continuity *} lemma uniformly_continuous_on_id[continuous_on_intros]: - shows "uniformly_continuous_on s (\x. x)" + "uniformly_continuous_on s (\x. x)" unfolding uniformly_continuous_on_def by auto lemma uniformly_continuous_on_const[continuous_on_intros]: - shows "uniformly_continuous_on s (\x. c)" + "uniformly_continuous_on s (\x. c)" unfolding uniformly_continuous_on_def by simp lemma uniformly_continuous_on_dist[continuous_on_intros]: fixes f g :: "'a::metric_space \ 'b::metric_space" assumes "uniformly_continuous_on s f" - assumes "uniformly_continuous_on s g" + and "uniformly_continuous_on s g" shows "uniformly_continuous_on s (\x. dist (f x) (g x))" proof - - { fix a b c d :: 'b have "\dist a b - dist c d\ \ dist a c + dist b d" + { + fix a b c d :: 'b + have "\dist a b - dist c d\ \ dist a c + dist b d" using dist_triangle2 [of a b c] dist_triangle2 [of b c d] using dist_triangle3 [of c d a] dist_triangle [of a d b] by arith } note le = this - { fix x y + { + fix x y assume f: "(\n. dist (f (x n)) (f (y n))) ----> 0" assume g: "(\n. dist (g (x n)) (g (y n))) ----> 0" have "(\n. \dist (f (x n)) (g (x n)) - dist (f (y n)) (g (y n))\) ----> 0" by (rule Lim_transform_bound [OF _ tendsto_add_zero [OF f g]], simp add: le) } - thus ?thesis using assms unfolding uniformly_continuous_on_sequentially + then show ?thesis + using assms unfolding uniformly_continuous_on_sequentially unfolding dist_real_def by simp qed @@ -4364,15 +4785,17 @@ lemma uniformly_continuous_on_add[continuous_on_intros]: fixes f g :: "'a::metric_space \ 'b::real_normed_vector" assumes "uniformly_continuous_on s f" - assumes "uniformly_continuous_on s g" + and "uniformly_continuous_on s g" shows "uniformly_continuous_on s (\x. f x + g x)" - using assms unfolding uniformly_continuous_on_sequentially + using assms + unfolding uniformly_continuous_on_sequentially unfolding dist_norm tendsto_norm_zero_iff add_diff_add by (auto intro: tendsto_add_zero) lemma uniformly_continuous_on_diff[continuous_on_intros]: fixes f :: "'a::metric_space \ 'b::real_normed_vector" - assumes "uniformly_continuous_on s f" and "uniformly_continuous_on s g" + assumes "uniformly_continuous_on s f" + and "uniformly_continuous_on s g" shows "uniformly_continuous_on s (\x. f x - g x)" unfolding ab_diff_minus using assms by (intro uniformly_continuous_on_add uniformly_continuous_on_minus) @@ -4385,22 +4808,32 @@ assumes "uniformly_continuous_on s f" "uniformly_continuous_on (f ` s) g" shows "uniformly_continuous_on s (g o f)" proof- - { fix e::real assume "e>0" - then obtain d where "d>0" and d:"\x\f ` s. \x'\f ` s. dist x' x < d \ dist (g x') (g x) < e" using assms(2) unfolding uniformly_continuous_on_def by auto - obtain d' where "d'>0" "\x\s. \x'\s. dist x' x < d' \ dist (f x') (f x) < d" using `d>0` using assms(1) unfolding uniformly_continuous_on_def by auto - hence "\d>0. \x\s. \x'\s. dist x' x < d \ dist ((g \ f) x') ((g \ f) x) < e" using `d>0` using d by auto } - thus ?thesis using assms unfolding uniformly_continuous_on_def by auto + { + fix e :: real + assume "e > 0" + then obtain d where "d > 0" + and d: "\x\f ` s. \x'\f ` s. dist x' x < d \ dist (g x') (g x) < e" + using assms(2) unfolding uniformly_continuous_on_def by auto + obtain d' where "d'>0" "\x\s. \x'\s. dist x' x < d' \ dist (f x') (f x) < d" + using `d > 0` using assms(1) unfolding uniformly_continuous_on_def by auto + then have "\d>0. \x\s. \x'\s. dist x' x < d \ dist ((g \ f) x') ((g \ f) x) < e" + using `d>0` using d by auto + } + then show ?thesis + using assms unfolding uniformly_continuous_on_def by auto qed text{* Continuity in terms of open preimages. *} lemma continuous_at_open: - shows "continuous (at x) f \ (\t. open t \ f x \ t --> (\s. open s \ x \ s \ (\x' \ s. (f x') \ t)))" -unfolding continuous_within_topological [of x UNIV f] -unfolding imp_conjL by (intro all_cong imp_cong ex_cong conj_cong refl) auto + "continuous (at x) f \ (\t. open t \ f x \ t --> (\s. open s \ x \ s \ (\x' \ s. (f x') \ t)))" + unfolding continuous_within_topological [of x UNIV f] + unfolding imp_conjL + by (intro all_cong imp_cong ex_cong conj_cong refl) auto lemma continuous_imp_tendsto: - assumes "continuous (at x0) f" and "x ----> x0" + assumes "continuous (at x0) f" + and "x ----> x0" shows "(f \ x) ----> (f x0)" proof (rule topological_tendstoI) fix S @@ -4415,15 +4848,17 @@ lemma continuous_on_open: "continuous_on s f \ - (\t. openin (subtopology euclidean (f ` s)) t - --> openin (subtopology euclidean s) {x \ s. f x \ t})" (is "?lhs = ?rhs") + (\t. openin (subtopology euclidean (f ` s)) t \ + openin (subtopology euclidean s) {x \ s. f x \ t})" unfolding continuous_on_open_invariant openin_open Int_def vimage_def Int_commute by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong) text {* Similarly in terms of closed sets. *} lemma continuous_on_closed: - shows "continuous_on s f \ (\t. closedin (subtopology euclidean (f ` s)) t --> closedin (subtopology euclidean s) {x \ s. f x \ t})" (is "?lhs = ?rhs") + "continuous_on s f \ + (\t. closedin (subtopology euclidean (f ` s)) t \ + closedin (subtopology euclidean s) {x \ s. f x \ t})" unfolding continuous_on_closed_invariant closedin_closed Int_def vimage_def Int_commute by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong) @@ -4432,22 +4867,28 @@ lemma continuous_open_in_preimage: assumes "continuous_on s f" "open t" shows "openin (subtopology euclidean s) {x \ s. f x \ t}" -proof- - have *:"\x. x \ s \ f x \ t \ x \ s \ f x \ (t \ f ` s)" by auto +proof - + have *: "\x. x \ s \ f x \ t \ x \ s \ f x \ (t \ f ` s)" + by auto have "openin (subtopology euclidean (f ` s)) (t \ f ` s)" using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto - thus ?thesis using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \ f ` s"]] using * by auto + then show ?thesis + using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \ f ` s"]] + using * by auto qed lemma continuous_closed_in_preimage: assumes "continuous_on s f" "closed t" shows "closedin (subtopology euclidean s) {x \ s. f x \ t}" -proof- - have *:"\x. x \ s \ f x \ t \ x \ s \ f x \ (t \ f ` s)" by auto +proof - + have *: "\x. x \ s \ f x \ t \ x \ s \ f x \ (t \ f ` s)" + by auto have "closedin (subtopology euclidean (f ` s)) (t \ f ` s)" - using closedin_closed_Int[of t "f ` s", OF assms(2)] unfolding Int_commute by auto - thus ?thesis - using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \ f ` s"]] using * by auto + using closedin_closed_Int[of t "f ` s", OF assms(2)] unfolding Int_commute + by auto + then show ?thesis + using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \ f ` s"]] + using * by auto qed lemma continuous_open_preimage: @@ -4456,32 +4897,32 @@ proof- obtain T where T: "open T" "{x \ s. f x \ t} = s \ T" using continuous_open_in_preimage[OF assms(1,3)] unfolding openin_open by auto - thus ?thesis using open_Int[of s T, OF assms(2)] by auto + then show ?thesis + using open_Int[of s T, OF assms(2)] by auto qed lemma continuous_closed_preimage: assumes "continuous_on s f" "closed s" "closed t" shows "closed {x \ s. f x \ t}" proof- - obtain T where T: "closed T" "{x \ s. f x \ t} = s \ T" - using continuous_closed_in_preimage[OF assms(1,3)] unfolding closedin_closed by auto - thus ?thesis using closed_Int[of s T, OF assms(2)] by auto + obtain T where "closed T" "{x \ s. f x \ t} = s \ T" + using continuous_closed_in_preimage[OF assms(1,3)] + unfolding closedin_closed by auto + then show ?thesis using closed_Int[of s T, OF assms(2)] by auto qed lemma continuous_open_preimage_univ: - shows "\x. continuous (at x) f \ open s \ open {x. f x \ s}" + "\x. continuous (at x) f \ open s \ open {x. f x \ s}" using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto lemma continuous_closed_preimage_univ: - shows "(\x. continuous (at x) f) \ closed s ==> closed {x. f x \ s}" + "(\x. continuous (at x) f) \ closed s ==> closed {x. f x \ s}" using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto -lemma continuous_open_vimage: - shows "\x. continuous (at x) f \ open s \ open (f -` s)" +lemma continuous_open_vimage: "\x. continuous (at x) f \ open s \ open (f -` s)" unfolding vimage_def by (rule continuous_open_preimage_univ) -lemma continuous_closed_vimage: - shows "\x. continuous (at x) f \ closed s \ closed (f -` s)" +lemma continuous_closed_vimage: "\x. continuous (at x) f \ closed s \ closed (f -` s)" unfolding vimage_def by (rule continuous_closed_preimage_univ) lemma interior_image_subset: @@ -4490,7 +4931,7 @@ proof fix x assume "x \ interior (f ` s)" then obtain T where as: "open T" "x \ T" "T \ f ` s" .. - hence "x \ f ` s" by auto + then have "x \ f ` s" by auto then obtain y where y: "y \ s" "x = f y" by auto have "open (vimage f T)" using assms(1) `open T` by (rule continuous_open_vimage) @@ -4517,71 +4958,89 @@ lemma continuous_constant_on_closure: fixes f :: "_ \ 'b::t1_space" assumes "continuous_on (closure s) f" - "\x \ s. f x = a" + and "\x \ s. f x = a" shows "\x \ (closure s). f x = a" using continuous_closed_preimage_constant[of "closure s" f a] - assms closure_minimal[of s "{x \ closure s. f x = a}"] closure_subset unfolding subset_eq by auto + assms closure_minimal[of s "{x \ closure s. f x = a}"] closure_subset + unfolding subset_eq + by auto lemma image_closure_subset: assumes "continuous_on (closure s) f" "closed t" "(f ` s) \ t" shows "f ` (closure s) \ t" -proof- - have "s \ {x \ closure s. f x \ t}" using assms(3) closure_subset by auto +proof - + have "s \ {x \ closure s. f x \ t}" + using assms(3) closure_subset by auto moreover have "closed {x \ closure s. f x \ t}" using continuous_closed_preimage[OF assms(1)] and assms(2) by auto ultimately have "closure s = {x \ closure s . f x \ t}" using closure_minimal[of s "{x \ closure s. f x \ t}"] by auto - thus ?thesis by auto + then show ?thesis by auto qed lemma continuous_on_closure_norm_le: fixes f :: "'a::metric_space \ 'b::real_normed_vector" - assumes "continuous_on (closure s) f" "\y \ s. norm(f y) \ b" "x \ (closure s)" + assumes "continuous_on (closure s) f" + and "\y \ s. norm(f y) \ b" + and "x \ (closure s)" shows "norm(f x) \ b" -proof- - have *:"f ` s \ cball 0 b" using assms(2)[unfolded mem_cball_0[THEN sym]] by auto +proof - + have *: "f ` s \ cball 0 b" + using assms(2)[unfolded mem_cball_0[THEN sym]] by auto show ?thesis using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3) - unfolding subset_eq apply(erule_tac x="f x" in ballE) by (auto simp add: dist_norm) + unfolding subset_eq + apply (erule_tac x="f x" in ballE) + apply (auto simp add: dist_norm) + done qed text {* Making a continuous function avoid some value in a neighbourhood. *} lemma continuous_within_avoid: fixes f :: "'a::metric_space \ 'b::t1_space" - assumes "continuous (at x within s) f" and "f x \ a" + assumes "continuous (at x within s) f" + and "f x \ a" shows "\e>0. \y \ s. dist x y < e --> f y \ a" proof- obtain U where "open U" and "f x \ U" and "a \ U" using t1_space [OF `f x \ a`] by fast have "(f ---> f x) (at x within s)" using assms(1) by (simp add: continuous_within) - hence "eventually (\y. f y \ U) (at x within s)" + then have "eventually (\y. f y \ U) (at x within s)" using `open U` and `f x \ U` unfolding tendsto_def by fast - hence "eventually (\y. f y \ a) (at x within s)" + then have "eventually (\y. f y \ a) (at x within s)" using `a \ U` by (fast elim: eventually_mono [rotated]) - thus ?thesis + then show ?thesis using `f x \ a` by (auto simp: dist_commute zero_less_dist_iff eventually_at) qed lemma continuous_at_avoid: fixes f :: "'a::metric_space \ 'b::t1_space" - assumes "continuous (at x) f" and "f x \ a" + assumes "continuous (at x) f" + and "f x \ a" shows "\e>0. \y. dist x y < e \ f y \ a" using assms continuous_within_avoid[of x UNIV f a] by simp lemma continuous_on_avoid: fixes f :: "'a::metric_space \ 'b::t1_space" - assumes "continuous_on s f" "x \ s" "f x \ a" + assumes "continuous_on s f" + and "x \ s" + and "f x \ a" shows "\e>0. \y \ s. dist x y < e \ f y \ a" -using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x], OF assms(2)] continuous_within_avoid[of x s f a] assms(3) by auto + using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x], + OF assms(2)] continuous_within_avoid[of x s f a] + using assms(3) + by auto lemma continuous_on_open_avoid: fixes f :: "'a::metric_space \ 'b::t1_space" assumes "continuous_on s f" "open s" "x \ s" "f x \ a" shows "\e>0. \y. dist x y < e \ f y \ a" -using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)] continuous_at_avoid[of x f a] assms(4) by auto + using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)] + using continuous_at_avoid[of x f a] assms(4) + by auto text {* Proving a function is constant by proving open-ness of level set. *} @@ -4589,22 +5048,28 @@ fixes f :: "_ \ 'b::t1_space" shows "connected s \ continuous_on s f \ openin (subtopology euclidean s) {x \ s. f x = a} - ==> (\x \ s. f x \ a) \ (\x \ s. f x = a)" -unfolding connected_clopen using continuous_closed_in_preimage_constant by auto + \ (\x \ s. f x \ a) \ (\x \ s. f x = a)" + unfolding connected_clopen + using continuous_closed_in_preimage_constant by auto lemma continuous_levelset_open_in: fixes f :: "_ \ 'b::t1_space" shows "connected s \ continuous_on s f \ openin (subtopology euclidean s) {x \ s. f x = a} \ (\x \ s. f x = a) ==> (\x \ s. f x = a)" -using continuous_levelset_open_in_cases[of s f ] -by meson + using continuous_levelset_open_in_cases[of s f ] + by meson lemma continuous_levelset_open: fixes f :: "_ \ 'b::t1_space" - assumes "connected s" "continuous_on s f" "open {x \ s. f x = a}" "\x \ s. f x = a" + assumes "connected s" + and "continuous_on s f" + and "open {x \ s. f x = a}" + and "\x \ s. f x = a" shows "\x \ s. f x = a" -using continuous_levelset_open_in[OF assms(1,2), of a, unfolded openin_open] using assms (3,4) by fast + using continuous_levelset_open_in[OF assms(1,2), of a, unfolded openin_open] + using assms (3,4) + by fast text {* Some arithmetical combinations (more to prove). *} @@ -4612,18 +5077,38 @@ fixes s :: "'a::real_normed_vector set" assumes "c \ 0" "open s" shows "open((\x. c *\<^sub>R x) ` s)" -proof- - { fix x assume "x \ s" - then obtain e where "e>0" and e:"\x'. dist x' x < e \ x' \ s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]] by auto - have "e * abs c > 0" using assms(1)[unfolded zero_less_abs_iff[THEN sym]] using mult_pos_pos[OF `e>0`] by auto +proof - + { + fix x + assume "x \ s" + then obtain e where "e>0" + and e:"\x'. dist x' x < e \ x' \ s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]] + by auto + have "e * abs c > 0" + using assms(1)[unfolded zero_less_abs_iff[THEN sym]] + using mult_pos_pos[OF `e>0`] + by auto moreover - { fix y assume "dist y (c *\<^sub>R x) < e * \c\" - hence "norm ((1 / c) *\<^sub>R y - x) < e" unfolding dist_norm + { + fix y + assume "dist y (c *\<^sub>R x) < e * \c\" + then have "norm ((1 / c) *\<^sub>R y - x) < e" + unfolding dist_norm using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1) assms(1)[unfolded zero_less_abs_iff[THEN sym]] by (simp del:zero_less_abs_iff) - hence "y \ op *\<^sub>R c ` s" using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"] e[THEN spec[where x="(1 / c) *\<^sub>R y"]] assms(1) unfolding dist_norm scaleR_scaleR by auto } - ultimately have "\e>0. \x'. dist x' (c *\<^sub>R x) < e \ x' \ op *\<^sub>R c ` s" apply(rule_tac x="e * abs c" in exI) by auto } - thus ?thesis unfolding open_dist by auto + then have "y \ op *\<^sub>R c ` s" + using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"] + using e[THEN spec[where x="(1 / c) *\<^sub>R y"]] + using assms(1) + unfolding dist_norm scaleR_scaleR + by auto + } + ultimately have "\e>0. \x'. dist x' (c *\<^sub>R x) < e \ x' \ op *\<^sub>R c ` s" + apply (rule_tac x="e * abs c" in exI) + apply auto + done + } + then show ?thesis unfolding open_dist by auto qed lemma minus_image_eq_vimage: @@ -4640,83 +5125,124 @@ lemma open_translation: fixes s :: "'a::real_normed_vector set" assumes "open s" shows "open((\x. a + x) ` s)" -proof- - { fix x have "continuous (at x) (\x. x - a)" - by (intro continuous_diff continuous_at_id continuous_const) } - moreover have "{x. x - a \ s} = op + a ` s" by force - ultimately show ?thesis using continuous_open_preimage_univ[of "\x. x - a" s] using assms by auto +proof - + { + fix x + have "continuous (at x) (\x. x - a)" + by (intro continuous_diff continuous_at_id continuous_const) + } + moreover have "{x. x - a \ s} = op + a ` s" + by force + ultimately show ?thesis using continuous_open_preimage_univ[of "\x. x - a" s] + using assms by auto qed lemma open_affinity: fixes s :: "'a::real_normed_vector set" assumes "open s" "c \ 0" shows "open ((\x. a + c *\<^sub>R x) ` s)" -proof- - have *:"(\x. a + c *\<^sub>R x) = (\x. a + x) \ (\x. c *\<^sub>R x)" unfolding o_def .. - have "op + a ` op *\<^sub>R c ` s = (op + a \ op *\<^sub>R c) ` s" by auto - thus ?thesis using assms open_translation[of "op *\<^sub>R c ` s" a] unfolding * by auto +proof - + have *: "(\x. a + c *\<^sub>R x) = (\x. a + x) \ (\x. c *\<^sub>R x)" + unfolding o_def .. + have "op + a ` op *\<^sub>R c ` s = (op + a \ op *\<^sub>R c) ` s" + by auto + then show ?thesis + using assms open_translation[of "op *\<^sub>R c ` s" a] + unfolding * + by auto qed lemma interior_translation: fixes s :: "'a::real_normed_vector set" shows "interior ((\x. a + x) ` s) = (\x. a + x) ` (interior s)" proof (rule set_eqI, rule) - fix x assume "x \ interior (op + a ` s)" - then obtain e where "e>0" and e:"ball x e \ op + a ` s" unfolding mem_interior by auto - hence "ball (x - a) e \ s" unfolding subset_eq Ball_def mem_ball dist_norm apply auto apply(erule_tac x="a + xa" in allE) unfolding ab_group_add_class.diff_diff_eq[THEN sym] by auto - thus "x \ op + a ` interior s" unfolding image_iff apply(rule_tac x="x - a" in bexI) unfolding mem_interior using `e > 0` by auto + fix x + assume "x \ interior (op + a ` s)" + then obtain e where "e > 0" and e: "ball x e \ op + a ` s" + unfolding mem_interior by auto + then have "ball (x - a) e \ s" + unfolding subset_eq Ball_def mem_ball dist_norm + apply auto + apply (erule_tac x="a + xa" in allE) + unfolding ab_group_add_class.diff_diff_eq[THEN sym] + apply auto + done + then show "x \ op + a ` interior s" + unfolding image_iff + apply (rule_tac x="x - a" in bexI) + unfolding mem_interior + using `e > 0` + apply auto + done next - fix x assume "x \ op + a ` interior s" - then obtain y e where "e>0" and e:"ball y e \ s" and y:"x = a + y" unfolding image_iff Bex_def mem_interior by auto - { fix z have *:"a + y - z = y + a - z" by auto - assume "z\ball x e" - hence "z - a \ s" using e[unfolded subset_eq, THEN bspec[where x="z - a"]] unfolding mem_ball dist_norm y group_add_class.diff_diff_eq2 * by auto - hence "z \ op + a ` s" unfolding image_iff by(auto intro!: bexI[where x="z - a"]) } - hence "ball x e \ op + a ` s" unfolding subset_eq by auto - thus "x \ interior (op + a ` s)" unfolding mem_interior using `e>0` by auto + fix x + assume "x \ op + a ` interior s" + then obtain y e where "e > 0" and e: "ball y e \ s" and y: "x = a + y" + unfolding image_iff Bex_def mem_interior by auto + { + fix z + have *: "a + y - z = y + a - z" by auto + assume "z \ ball x e" + then have "z - a \ s" + using e[unfolded subset_eq, THEN bspec[where x="z - a"]] + unfolding mem_ball dist_norm y group_add_class.diff_diff_eq2 * + by auto + then have "z \ op + a ` s" + unfolding image_iff by (auto intro!: bexI[where x="z - a"]) + } + then have "ball x e \ op + a ` s" + unfolding subset_eq by auto + then show "x \ interior (op + a ` s)" + unfolding mem_interior using `e > 0` by auto qed text {* Topological properties of linear functions. *} lemma linear_lim_0: - assumes "bounded_linear f" shows "(f ---> 0) (at (0))" -proof- + assumes "bounded_linear f" + shows "(f ---> 0) (at (0))" +proof - interpret f: bounded_linear f by fact have "(f ---> f 0) (at 0)" using tendsto_ident_at by (rule f.tendsto) - thus ?thesis unfolding f.zero . + then show ?thesis unfolding f.zero . qed lemma linear_continuous_at: - assumes "bounded_linear f" shows "continuous (at a) f" + assumes "bounded_linear f" + shows "continuous (at a) f" unfolding continuous_at using assms apply (rule bounded_linear.tendsto) apply (rule tendsto_ident_at) done lemma linear_continuous_within: - shows "bounded_linear f ==> continuous (at x within s) f" + "bounded_linear f ==> continuous (at x within s) f" using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto lemma linear_continuous_on: - shows "bounded_linear f ==> continuous_on s f" + "bounded_linear f ==> continuous_on s f" using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto text {* Also bilinear functions, in composition form. *} lemma bilinear_continuous_at_compose: - shows "continuous (at x) f \ continuous (at x) g \ bounded_bilinear h - ==> continuous (at x) (\x. h (f x) (g x))" - unfolding continuous_at using Lim_bilinear[of f "f x" "(at x)" g "g x" h] by auto + "continuous (at x) f \ continuous (at x) g \ bounded_bilinear h \ + continuous (at x) (\x. h (f x) (g x))" + unfolding continuous_at + using Lim_bilinear[of f "f x" "(at x)" g "g x" h] + by auto lemma bilinear_continuous_within_compose: - shows "continuous (at x within s) f \ continuous (at x within s) g \ bounded_bilinear h - ==> continuous (at x within s) (\x. h (f x) (g x))" - unfolding continuous_within using Lim_bilinear[of f "f x"] by auto + "continuous (at x within s) f \ continuous (at x within s) g \ bounded_bilinear h \ + continuous (at x within s) (\x. h (f x) (g x))" + unfolding continuous_within + using Lim_bilinear[of f "f x"] + by auto lemma bilinear_continuous_on_compose: - shows "continuous_on s f \ continuous_on s g \ bounded_bilinear h - ==> continuous_on s (\x. h (f x) (g x))" + "continuous_on s f \ continuous_on s g \ bounded_bilinear h \ + continuous_on s (\x. h (f x) (g x))" unfolding continuous_on_def by (fast elim: bounded_bilinear.tendsto) @@ -4729,13 +5255,13 @@ proof safe fix C assume "compact S" and "\c\C. openin (subtopology euclidean S) c" and "S \ \C" - hence "\c\{T. open T \ S \ T \ C}. open c" and "S \ \{T. open T \ S \ T \ C}" + then have "\c\{T. open T \ S \ T \ C}. open c" and "S \ \{T. open T \ S \ T \ C}" unfolding openin_open by force+ with `compact S` obtain D where "D \ {T. open T \ S \ T \ C}" and "finite D" and "S \ \D" by (rule compactE) - hence "image (\T. S \ T) D \ C \ finite (image (\T. S \ T) D) \ S \ \(image (\T. S \ T) D)" + then have "image (\T. S \ T) D \ C \ finite (image (\T. S \ T) D) \ S \ \(image (\T. S \ T) D)" by auto - thus "\D\C. finite D \ S \ \D" .. + then show "\D\C. finite D \ S \ \D" .. next assume 1: "\C. (\c\C. openin (subtopology euclidean S) c) \ S \ \C \ (\D\C. finite D \ S \ \D)" @@ -4744,7 +5270,7 @@ fix C let ?C = "image (\T. S \ T) C" assume "\t\C. open t" and "S \ \C" - hence "(\c\?C. openin (subtopology euclidean S) c) \ S \ \?C" + then have "(\c\?C. openin (subtopology euclidean S) c) \ S \ \?C" unfolding openin_open by auto with 1 obtain D where "D \ ?C" and "finite D" and "S \ \D" by metis @@ -4762,37 +5288,43 @@ apply (erule rev_bexI, fast) done qed - thus "\D\C. finite D \ S \ \D" .. + then show "\D\C. finite D \ S \ \D" .. qed qed lemma connected_continuous_image: assumes "continuous_on s f" "connected s" shows "connected(f ` s)" -proof- - { fix T assume as: "T \ {}" "T \ f ` s" "openin (subtopology euclidean (f ` s)) T" "closedin (subtopology euclidean (f ` s)) T" +proof - + { + fix T + assume as: "T \ {}" "T \ f ` s" "openin (subtopology euclidean (f ` s)) T" "closedin (subtopology euclidean (f ` s)) T" have "{x \ s. f x \ T} = {} \ {x \ s. f x \ T} = s" using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]] using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]] using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \ s. f x \ T}"]] as(3,4) by auto - hence False using as(1,2) - using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto } - thus ?thesis unfolding connected_clopen by auto + then have False using as(1,2) + using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto + } + then show ?thesis + unfolding connected_clopen by auto qed text {* Continuity implies uniform continuity on a compact domain. *} - + lemma compact_uniformly_continuous: assumes f: "continuous_on s f" and s: "compact s" shows "uniformly_continuous_on s f" unfolding uniformly_continuous_on_def proof (cases, safe) - fix e :: real assume "0 < e" "s \ {}" + fix e :: real + assume "0 < e" "s \ {}" def [simp]: R \ "{(y, d). y \ s \ 0 < d \ ball y d \ s \ {x \ s. f x \ ball (f y) (e/2) } }" let ?b = "(\(y, d). ball y (d/2))" have "(\r\R. open (?b r))" "s \ (\r\R. ?b r)" proof safe - fix y assume "y \ s" + fix y + assume "y \ s" from continuous_open_in_preimage[OF f open_ball] obtain T where "open T" and T: "{x \ s. f x \ ball (f y) (e/2)} = T \ s" unfolding openin_subtopology open_openin by metis @@ -4807,7 +5339,8 @@ by (subst Min_gr_iff) auto show "\d>0. \x\s. \x'\s. dist x' x < d \ dist (f x') (f x) < e" proof (rule, safe) - fix x x' assume in_s: "x' \ s" "x \ s" + fix x x' + assume in_s: "x' \ s" "x \ s" with D obtain y d where x: "x \ ball y (d/2)" "(y, d) \ D" by blast moreover assume "dist x x' < Min (snd`D) / 2" @@ -4823,11 +5356,13 @@ lemma continuous_uniform_limit: fixes f :: "'a \ 'b::metric_space \ 'c::metric_space" assumes "\ trivial_limit F" - assumes "eventually (\n. continuous_on s (f n)) F" - assumes "\e>0. eventually (\n. \x\s. dist (f n x) (g x) < e) F" + and "eventually (\n. continuous_on s (f n)) F" + and "\e>0. eventually (\n. \x\s. dist (f n x) (g x) < e) F" shows "continuous_on s g" -proof- - { fix x and e::real assume "x\s" "e>0" +proof - + { + fix x and e :: real + assume "x\s" "e>0" have "eventually (\n. \x\s. dist (f n x) (g x) < e / 3) F" using `e>0` assms(3)[THEN spec[where x="e/3"]] by auto from eventually_happens [OF eventually_conj [OF this assms(2)]] @@ -4836,29 +5371,33 @@ have "e / 3 > 0" using `e>0` by auto then obtain d where "d>0" and d:"\x'\s. dist x' x < d \ dist (f n x') (f n x) < e / 3" using n(2)[unfolded continuous_on_iff, THEN bspec[where x=x], OF `x\s`, THEN spec[where x="e/3"]] by blast - { fix y assume "y \ s" and "dist y x < d" - hence "dist (f n y) (f n x) < e / 3" + { + fix y + assume "y \ s" and "dist y x < d" + then have "dist (f n y) (f n x) < e / 3" by (rule d [rule_format]) - hence "dist (f n y) (g x) < 2 * e / 3" + then have "dist (f n y) (g x) < 2 * e / 3" using dist_triangle [of "f n y" "g x" "f n x"] using n(1)[THEN bspec[where x=x], OF `x\s`] by auto - hence "dist (g y) (g x) < e" + then have "dist (g y) (g x) < e" using n(1)[THEN bspec[where x=y], OF `y\s`] using dist_triangle3 [of "g y" "g x" "f n y"] - by auto } - hence "\d>0. \x'\s. dist x' x < d \ dist (g x') (g x) < e" - using `d>0` by auto } - thus ?thesis unfolding continuous_on_iff by auto + by auto + } + then have "\d>0. \x'\s. dist x' x < d \ dist (g x') (g x) < e" + using `d>0` by auto + } + then show ?thesis + unfolding continuous_on_iff by auto qed subsection {* Topological stuff lifted from and dropped to R *} lemma open_real: - fixes s :: "real set" shows - "open s \ - (\x \ s. \e>0. \x'. abs(x' - x) < e --> x' \ s)" (is "?lhs = ?rhs") + fixes s :: "real set" + shows "open s \ (\x \ s. \e>0. \x'. abs(x' - x) < e --> x' \ s)" unfolding open_dist dist_norm by simp lemma islimpt_approachable_real: @@ -4868,23 +5407,31 @@ lemma closed_real: fixes s :: "real set" - shows "closed s \ - (\x. (\e>0. \x' \ s. x' \ x \ abs(x' - x) < e) - --> x \ s)" + shows "closed s \ (\x. (\e>0. \x' \ s. x' \ x \ abs(x' - x) < e) \ x \ s)" unfolding closed_limpt islimpt_approachable dist_norm by simp lemma continuous_at_real_range: fixes f :: "'a::real_normed_vector \ real" - shows "continuous (at x) f \ (\e>0. \d>0. - \x'. norm(x' - x) < d --> abs(f x' - f x) < e)" - unfolding continuous_at unfolding Lim_at - unfolding dist_nz[THEN sym] unfolding dist_norm apply auto - apply(erule_tac x=e in allE) apply auto apply (rule_tac x=d in exI) apply auto apply (erule_tac x=x' in allE) apply auto - apply(erule_tac x=e in allE) by auto + shows "continuous (at x) f \ (\e>0. \d>0. \x'. norm(x' - x) < d --> abs(f x' - f x) < e)" + unfolding continuous_at + unfolding Lim_at + unfolding dist_nz[THEN sym] + unfolding dist_norm + apply auto + apply (erule_tac x=e in allE) + apply auto + apply (rule_tac x=d in exI) + apply auto + apply (erule_tac x=x' in allE) + apply auto + apply (erule_tac x=e in allE) + apply auto + done lemma continuous_on_real_range: fixes f :: "'a::real_normed_vector \ real" - shows "continuous_on s f \ (\x \ s. \e>0. \d>0. (\x' \ s. norm(x' - x) < d --> abs(f x' - f x) < e))" + shows "continuous_on s f \ + (\x \ s. \e>0. \d>0. (\x' \ s. norm(x' - x) < d \ abs(f x' - f x) < e))" unfolding continuous_on_iff dist_norm by simp text {* Hence some handy theorems on distance, diameter etc. of/from a set. *} @@ -4893,11 +5440,13 @@ assumes "compact s" "s \ {}" shows "\x\s. \y\s. dist a y \ dist a x" proof (rule continuous_attains_sup [OF assms]) - { fix x assume "x\s" + { + fix x + assume "x\s" have "(dist a ---> dist a x) (at x within s)" by (intro tendsto_dist tendsto_const tendsto_ident_at) } - thus "continuous_on s (dist a)" + then show "continuous_on s (dist a)" unfolding continuous_on .. qed @@ -4907,63 +5456,68 @@ fixes a :: "'a::heine_borel" assumes "closed s" "s \ {}" shows "\x\s. \y\s. dist a x \ dist a y" -proof- +proof - from assms(2) obtain b where "b \ s" by auto let ?B = "s \ cball a (dist b a)" - have "?B \ {}" using `b \ s` by (auto simp add: dist_commute) + have "?B \ {}" using `b \ s` + by (auto simp add: dist_commute) moreover have "continuous_on ?B (dist a)" by (auto intro!: continuous_at_imp_continuous_on continuous_dist continuous_at_id continuous_const) moreover have "compact ?B" by (intro closed_inter_compact `closed s` compact_cball) ultimately obtain x where "x \ ?B" "\y\?B. dist a x \ dist a y" by (metis continuous_attains_inf) - thus ?thesis by fastforce + then show ?thesis by fastforce qed subsection {* Pasted sets *} lemma bounded_Times: - assumes "bounded s" "bounded t" shows "bounded (s \ t)" -proof- + assumes "bounded s" "bounded t" + shows "bounded (s \ t)" +proof - obtain x y a b where "\z\s. dist x z \ a" "\z\t. dist y z \ b" using assms [unfolded bounded_def] by auto then have "\z\s \ t. dist (x, y) z \ sqrt (a\<^sup>2 + b\<^sup>2)" by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono) - thus ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto + then show ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto qed lemma mem_Times_iff: "x \ A \ B \ fst x \ A \ snd x \ B" -by (induct x) simp + by (induct x) simp lemma seq_compact_Times: "seq_compact s \ seq_compact t \ seq_compact (s \ t)" -unfolding seq_compact_def -apply clarify -apply (drule_tac x="fst \ f" in spec) -apply (drule mp, simp add: mem_Times_iff) -apply (clarify, rename_tac l1 r1) -apply (drule_tac x="snd \ f \ r1" in spec) -apply (drule mp, simp add: mem_Times_iff) -apply (clarify, rename_tac l2 r2) -apply (rule_tac x="(l1, l2)" in rev_bexI, simp) -apply (rule_tac x="r1 \ r2" in exI) -apply (rule conjI, simp add: subseq_def) -apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption) -apply (drule (1) tendsto_Pair) back -apply (simp add: o_def) -done - -lemma compact_Times: + unfolding seq_compact_def + apply clarify + apply (drule_tac x="fst \ f" in spec) + apply (drule mp, simp add: mem_Times_iff) + apply (clarify, rename_tac l1 r1) + apply (drule_tac x="snd \ f \ r1" in spec) + apply (drule mp, simp add: mem_Times_iff) + apply (clarify, rename_tac l2 r2) + apply (rule_tac x="(l1, l2)" in rev_bexI, simp) + apply (rule_tac x="r1 \ r2" in exI) + apply (rule conjI, simp add: subseq_def) + apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption) + apply (drule (1) tendsto_Pair) back + apply (simp add: o_def) + done + +lemma compact_Times: assumes "compact s" "compact t" shows "compact (s \ t)" proof (rule compactI) - fix C assume C: "\t\C. open t" "s \ t \ \C" + fix C + assume C: "\t\C. open t" "s \ t \ \C" have "\x\s. \a. open a \ x \ a \ (\d\C. finite d \ a \ t \ \d)" proof - fix x assume "x \ s" + fix x + assume "x \ s" have "\y\t. \a b c. c \ C \ open a \ open b \ x \ a \ y \ b \ a \ b \ c" (is "\y\t. ?P y") - proof - fix y assume "y \ t" + proof + fix y + assume "y \ t" with `x \ s` C obtain c where "c \ C" "(x, y) \ c" "open c" by auto then show "?P y" by (auto elim!: open_prod_elim) qed @@ -4981,12 +5535,18 @@ then obtain a d where a: "\x\s. open (a x)" "s \ (\x\s. a x)" and d: "\x. x \ s \ d x \ C \ finite (d x) \ a x \ t \ \d x" unfolding subset_eq UN_iff by metis - moreover from compactE_image[OF `compact s` a] obtain e where e: "e \ s" "finite e" - and s: "s \ (\x\e. a x)" by auto + moreover + from compactE_image[OF `compact s` a] + obtain e where e: "e \ s" "finite e" and s: "s \ (\x\e. a x)" + by auto moreover - { from s have "s \ t \ (\x\e. a x \ t)" by auto - also have "\ \ (\x\e. \d x)" using d `e \ s` by (intro UN_mono) auto - finally have "s \ t \ (\x\e. \d x)" . } + { + from s have "s \ t \ (\x\e. a x \ t)" + by auto + also have "\ \ (\x\e. \d x)" + using d `e \ s` by (intro UN_mono) auto + finally have "s \ t \ (\x\e. \d x)" . + } ultimately show "\C'\C. finite C' \ s \ t \ \C'" by (intro exI[of _ "(\x\e. d x)"]) (auto simp add: subset_eq) qed @@ -4995,28 +5555,38 @@ lemma compact_scaling: fixes s :: "'a::real_normed_vector set" - assumes "compact s" shows "compact ((\x. c *\<^sub>R x) ` s)" -proof- + assumes "compact s" + shows "compact ((\x. c *\<^sub>R x) ` s)" +proof - let ?f = "\x. scaleR c x" - have *:"bounded_linear ?f" by (rule bounded_linear_scaleR_right) - show ?thesis using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f] - using linear_continuous_at[OF *] assms by auto + have *: "bounded_linear ?f" by (rule bounded_linear_scaleR_right) + show ?thesis + using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f] + using linear_continuous_at[OF *] assms + by auto qed lemma compact_negations: fixes s :: "'a::real_normed_vector set" - assumes "compact s" shows "compact ((\x. -x) ` s)" + assumes "compact s" + shows "compact ((\x. -x) ` s)" using compact_scaling [OF assms, of "- 1"] by auto lemma compact_sums: fixes s t :: "'a::real_normed_vector set" - assumes "compact s" "compact t" shows "compact {x + y | x y. x \ s \ y \ t}" -proof- - have *:"{x + y | x y. x \ s \ y \ t} = (\z. fst z + snd z) ` (s \ t)" - apply auto unfolding image_iff apply(rule_tac x="(xa, y)" in bexI) by auto + assumes "compact s" and "compact t" + shows "compact {x + y | x y. x \ s \ y \ t}" +proof - + have *: "{x + y | x y. x \ s \ y \ t} = (\z. fst z + snd z) ` (s \ t)" + apply auto + unfolding image_iff + apply (rule_tac x="(xa, y)" in bexI) + apply auto + done have "continuous_on (s \ t) (\z. fst z + snd z)" unfolding continuous_on by (rule ballI) (intro tendsto_intros) - thus ?thesis unfolding * using compact_continuous_image compact_Times [OF assms] by auto + then show ?thesis + unfolding * using compact_continuous_image compact_Times [OF assms] by auto qed lemma compact_differences: @@ -5024,24 +5594,36 @@ assumes "compact s" "compact t" shows "compact {x - y | x y. x \ s \ y \ t}" proof- have "{x - y | x y. x\s \ y \ t} = {x + y | x y. x \ s \ y \ (uminus ` t)}" - apply auto apply(rule_tac x= xa in exI) apply auto apply(rule_tac x=xa in exI) by auto - thus ?thesis using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto + apply auto + apply (rule_tac x= xa in exI) + apply auto + apply (rule_tac x=xa in exI) + apply auto + done + then show ?thesis + using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto qed lemma compact_translation: fixes s :: "'a::real_normed_vector set" - assumes "compact s" shows "compact ((\x. a + x) ` s)" -proof- - have "{x + y |x y. x \ s \ y \ {a}} = (\x. a + x) ` s" by auto - thus ?thesis using compact_sums[OF assms compact_sing[of a]] by auto + assumes "compact s" + shows "compact ((\x. a + x) ` s)" +proof - + have "{x + y |x y. x \ s \ y \ {a}} = (\x. a + x) ` s" + by auto + then show ?thesis + using compact_sums[OF assms compact_sing[of a]] by auto qed lemma compact_affinity: fixes s :: "'a::real_normed_vector set" - assumes "compact s" shows "compact ((\x. a + c *\<^sub>R x) ` s)" -proof- - have "op + a ` op *\<^sub>R c ` s = (\x. a + c *\<^sub>R x) ` s" by auto - thus ?thesis using compact_translation[OF compact_scaling[OF assms], of a c] by auto + assumes "compact s" + shows "compact ((\x. a + c *\<^sub>R x) ` s)" +proof - + have "op + a ` op *\<^sub>R c ` s = (\x. a + c *\<^sub>R x) ` s" + by auto + then show ?thesis + using compact_translation[OF compact_scaling[OF assms], of a c] by auto qed text {* Hence we get the following. *} @@ -5050,9 +5632,11 @@ fixes s :: "'a::metric_space set" assumes "compact s" "s \ {}" shows "\x\s. \y\s. \u\s. \v\s. dist u v \ dist x y" -proof- - have "compact (s \ s)" using `compact s` by (intro compact_Times) - moreover have "s \ s \ {}" using `s \ {}` by auto +proof - + have "compact (s \ s)" + using `compact s` by (intro compact_Times) + moreover have "s \ s \ {}" + using `s \ {}` by auto moreover have "continuous_on (s \ s) (\x. dist (fst x) (snd x))" by (intro continuous_at_imp_continuous_on ballI continuous_intros) ultimately show ?thesis @@ -5073,7 +5657,8 @@ unfolding bounded_def by auto have "dist x y \ Sup ?D" proof (rule cSup_upper, safe) - fix a b assume "a \ s" "b \ s" + fix a b + assume "a \ s" "b \ s" with z[of a] z[of b] dist_triangle[of a b z] show "dist a b \ 2 * d" by (simp add: dist_commute) @@ -5084,7 +5669,8 @@ lemma diameter_lower_bounded: fixes s :: "'a :: metric_space set" - assumes s: "bounded s" and d: "0 < d" "d < diameter s" + assumes s: "bounded s" + and d: "0 < d" "d < diameter s" shows "\x\s. \y\s. d < dist x y" proof (rule ccontr) let ?D = "{dist x y |x y. x \ s \ y \ s}" @@ -5110,12 +5696,17 @@ assumes "compact s" "s \ {}" shows "\x\s. \y\s. dist x y = diameter s" proof - - have b:"bounded s" using assms(1) by (rule compact_imp_bounded) - then obtain x y where xys:"x\s" "y\s" and xy:"\u\s. \v\s. dist u v \ dist x y" + have b: "bounded s" using assms(1) + by (rule compact_imp_bounded) + then obtain x y where xys: "x\s" "y\s" and xy: "\u\s. \v\s. dist u v \ dist x y" using compact_sup_maxdistance[OF assms] by auto - hence "diameter s \ dist x y" - unfolding diameter_def by clarsimp (rule cSup_least, fast+) - thus ?thesis + then have "diameter s \ dist x y" + unfolding diameter_def + apply clarsimp + apply (rule cSup_least) + apply fast+ + done + then show ?thesis by (metis b diameter_bounded_bound order_antisym xys) qed @@ -5123,109 +5714,175 @@ lemma closed_scaling: fixes s :: "'a::real_normed_vector set" - assumes "closed s" shows "closed ((\x. c *\<^sub>R x) ` s)" -proof(cases "s={}") - case True thus ?thesis by auto + assumes "closed s" + shows "closed ((\x. c *\<^sub>R x) ` s)" +proof (cases "s = {}") + case True + then show ?thesis by auto next case False show ?thesis - proof(cases "c=0") - have *:"(\x. 0) ` s = {0}" using `s\{}` by auto - case True thus ?thesis apply auto unfolding * by auto + proof (cases "c = 0") + have *: "(\x. 0) ` s = {0}" using `s\{}` by auto + case True + then show ?thesis + apply auto + unfolding * + apply auto + done next case False - { fix x l assume as:"\n::nat. x n \ scaleR c ` s" "(x ---> l) sequentially" - { fix n::nat have "scaleR (1 / c) (x n) \ s" + { + fix x l + assume as: "\n::nat. x n \ scaleR c ` s" "(x ---> l) sequentially" + { + fix n :: nat + have "scaleR (1 / c) (x n) \ s" using as(1)[THEN spec[where x=n]] - using `c\0` by auto + using `c\0` + by auto } moreover - { fix e::real assume "e>0" - hence "0 < e *\c\" using `c\0` mult_pos_pos[of e "abs c"] by auto + { + fix e :: real + assume "e > 0" + then have "0 < e *\c\" + using `c\0` mult_pos_pos[of e "abs c"] by auto then obtain N where "\n\N. dist (x n) l < e * \c\" using as(2)[unfolded LIMSEQ_def, THEN spec[where x="e * abs c"]] by auto - hence "\N. \n\N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e" - unfolding dist_norm unfolding scaleR_right_diff_distrib[THEN sym] - using mult_imp_div_pos_less[of "abs c" _ e] `c\0` by auto } - hence "((\n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially" unfolding LIMSEQ_def by auto + then have "\N. \n\N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e" + unfolding dist_norm + unfolding scaleR_right_diff_distrib[THEN sym] + using mult_imp_div_pos_less[of "abs c" _ e] `c\0` by auto + } + then have "((\n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially" + unfolding LIMSEQ_def by auto ultimately have "l \ scaleR c ` s" - using assms[unfolded closed_sequential_limits, THEN spec[where x="\n. scaleR (1/c) (x n)"], THEN spec[where x="scaleR (1/c) l"]] - unfolding image_iff using `c\0` apply(rule_tac x="scaleR (1 / c) l" in bexI) by auto } - thus ?thesis unfolding closed_sequential_limits by fast + using assms[unfolded closed_sequential_limits, + THEN spec[where x="\n. scaleR (1/c) (x n)"], + THEN spec[where x="scaleR (1/c) l"]] + unfolding image_iff using `c\0` + apply (rule_tac x="scaleR (1 / c) l" in bexI) + apply auto + done + } + then show ?thesis + unfolding closed_sequential_limits by fast qed qed lemma closed_negations: fixes s :: "'a::real_normed_vector set" - assumes "closed s" shows "closed ((\x. -x) ` s)" + assumes "closed s" + shows "closed ((\x. -x) ` s)" using closed_scaling[OF assms, of "- 1"] by simp lemma compact_closed_sums: fixes s :: "'a::real_normed_vector set" - assumes "compact s" "closed t" shows "closed {x + y | x y. x \ s \ y \ t}" -proof- + assumes "compact s" and "closed t" + shows "closed {x + y | x y. x \ s \ y \ t}" +proof - let ?S = "{x + y |x y. x \ s \ y \ t}" - { fix x l assume as:"\n. x n \ ?S" "(x ---> l) sequentially" - from as(1) obtain f where f:"\n. x n = fst (f n) + snd (f n)" "\n. fst (f n) \ s" "\n. snd (f n) \ t" + { + fix x l + assume as: "\n. x n \ ?S" "(x ---> l) sequentially" + from as(1) obtain f where f: "\n. x n = fst (f n) + snd (f n)" "\n. fst (f n) \ s" "\n. snd (f n) \ t" using choice[of "\n y. x n = (fst y) + (snd y) \ fst y \ s \ snd y \ t"] by auto - obtain l' r where "l'\s" and r:"subseq r" and lr:"(((\n. fst (f n)) \ r) ---> l') sequentially" + obtain l' r where "l'\s" and r: "subseq r" and lr: "(((\n. fst (f n)) \ r) ---> l') sequentially" using assms(1)[unfolded compact_def, THEN spec[where x="\ n. fst (f n)"]] using f(2) by auto have "((\n. snd (f (r n))) ---> l - l') sequentially" - using tendsto_diff[OF LIMSEQ_subseq_LIMSEQ[OF as(2) r] lr] and f(1) unfolding o_def by auto - hence "l - l' \ t" + using tendsto_diff[OF LIMSEQ_subseq_LIMSEQ[OF as(2) r] lr] and f(1) + unfolding o_def + by auto + then have "l - l' \ t" using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\ n. snd (f (r n))"], THEN spec[where x="l - l'"]] - using f(3) by auto - hence "l \ ?S" using `l' \ s` apply auto apply(rule_tac x=l' in exI) apply(rule_tac x="l - l'" in exI) by auto + using f(3) + by auto + then have "l \ ?S" + using `l' \ s` + apply auto + apply (rule_tac x=l' in exI) + apply (rule_tac x="l - l'" in exI) + apply auto + done } - thus ?thesis unfolding closed_sequential_limits by fast + then show ?thesis + unfolding closed_sequential_limits by fast qed lemma closed_compact_sums: fixes s t :: "'a::real_normed_vector set" assumes "closed s" "compact t" shows "closed {x + y | x y. x \ s \ y \ t}" -proof- - have "{x + y |x y. x \ t \ y \ s} = {x + y |x y. x \ s \ y \ t}" apply auto - apply(rule_tac x=y in exI) apply auto apply(rule_tac x=y in exI) by auto - thus ?thesis using compact_closed_sums[OF assms(2,1)] by simp +proof - + have "{x + y |x y. x \ t \ y \ s} = {x + y |x y. x \ s \ y \ t}" + apply auto + apply (rule_tac x=y in exI) + apply auto + apply (rule_tac x=y in exI) + apply auto + done + then show ?thesis + using compact_closed_sums[OF assms(2,1)] by simp qed lemma compact_closed_differences: fixes s t :: "'a::real_normed_vector set" - assumes "compact s" "closed t" + assumes "compact s" and "closed t" shows "closed {x - y | x y. x \ s \ y \ t}" -proof- +proof - have "{x + y |x y. x \ s \ y \ uminus ` t} = {x - y |x y. x \ s \ y \ t}" - apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto - thus ?thesis using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto + apply auto + apply (rule_tac x=xa in exI) + apply auto + apply (rule_tac x=xa in exI) + apply auto + done + then show ?thesis + using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto qed lemma closed_compact_differences: fixes s t :: "'a::real_normed_vector set" assumes "closed s" "compact t" shows "closed {x - y | x y. x \ s \ y \ t}" -proof- +proof - have "{x + y |x y. x \ s \ y \ uminus ` t} = {x - y |x y. x \ s \ y \ t}" - apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto - thus ?thesis using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp + apply auto + apply (rule_tac x=xa in exI) + apply auto + apply (rule_tac x=xa in exI) + apply auto + done + then show ?thesis + using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp qed lemma closed_translation: fixes a :: "'a::real_normed_vector" - assumes "closed s" shows "closed ((\x. a + x) ` s)" -proof- + assumes "closed s" + shows "closed ((\x. a + x) ` s)" +proof - have "{a + y |y. y \ s} = (op + a ` s)" by auto - thus ?thesis using compact_closed_sums[OF compact_sing[of a] assms] by auto + then show ?thesis + using compact_closed_sums[OF compact_sing[of a] assms] by auto qed lemma translation_Compl: fixes a :: "'a::ab_group_add" shows "(\x. a + x) ` (- t) = - ((\x. a + x) ` t)" - apply (auto simp add: image_iff) apply(rule_tac x="x - a" in bexI) by auto + apply (auto simp add: image_iff) + apply (rule_tac x="x - a" in bexI) + apply auto + done lemma translation_UNIV: - fixes a :: "'a::ab_group_add" shows "range (\x. a + x) = UNIV" - apply (auto simp add: image_iff) apply(rule_tac x="x - a" in exI) by auto + fixes a :: "'a::ab_group_add" + shows "range (\x. a + x) = UNIV" + apply (auto simp add: image_iff) + apply (rule_tac x="x - a" in exI) + apply auto + done lemma translation_diff: fixes a :: "'a::ab_group_add" @@ -5235,37 +5892,48 @@ lemma closure_translation: fixes a :: "'a::real_normed_vector" shows "closure ((\x. a + x) ` s) = (\x. a + x) ` (closure s)" -proof- - have *:"op + a ` (- s) = - op + a ` s" - apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto - show ?thesis unfolding closure_interior translation_Compl - using interior_translation[of a "- s"] unfolding * by auto +proof - + have *: "op + a ` (- s) = - op + a ` s" + apply auto + unfolding image_iff + apply (rule_tac x="x - a" in bexI) + apply auto + done + show ?thesis + unfolding closure_interior translation_Compl + using interior_translation[of a "- s"] + unfolding * + by auto qed lemma frontier_translation: fixes a :: "'a::real_normed_vector" shows "frontier((\x. a + x) ` s) = (\x. a + x) ` (frontier s)" - unfolding frontier_def translation_diff interior_translation closure_translation by auto + unfolding frontier_def translation_diff interior_translation closure_translation + by auto subsection {* Separation between points and sets *} lemma separate_point_closed: fixes s :: "'a::heine_borel set" - shows "closed s \ a \ s ==> (\d>0. \x\s. d \ dist a x)" -proof(cases "s = {}") + assumes "closed s" and "a \ s" + shows "\d>0. \x\s. d \ dist a x" +proof (cases "s = {}") case True - thus ?thesis by(auto intro!: exI[where x=1]) + then show ?thesis by(auto intro!: exI[where x=1]) next case False - assume "closed s" "a \ s" - then obtain x where "x\s" "\y\s. dist a x \ dist a y" using `s \ {}` distance_attains_inf [of s a] by blast - with `x\s` show ?thesis using dist_pos_lt[of a x] and`a \ s` by blast + from assms obtain x where "x\s" "\y\s. dist a x \ dist a y" + using `s \ {}` distance_attains_inf [of s a] by blast + with `x\s` show ?thesis using dist_pos_lt[of a x] and`a \ s` + by blast qed lemma separate_compact_closed: fixes s t :: "'a::heine_borel set" - assumes "compact s" and t: "closed t" "s \ t = {}" + assumes "compact s" + and t: "closed t" "s \ t = {}" shows "\d>0. \x\s. \y\t. d \ dist x y" proof cases assume "s \ {} \ t \ {}" @@ -5279,70 +5947,104 @@ using t `t \ {}` in_closed_iff_infdist_zero by (auto simp: less_le infdist_nonneg) moreover have "\x'\s. \y\t. ?inf x \ dist x' y" using x by (auto intro: order_trans infdist_le) - ultimately show ?thesis - by auto + ultimately show ?thesis by auto qed (auto intro!: exI[of _ 1]) lemma separate_closed_compact: fixes s t :: "'a::heine_borel set" - assumes "closed s" and "compact t" and "s \ t = {}" + assumes "closed s" + and "compact t" + and "s \ t = {}" shows "\d>0. \x\s. \y\t. d \ dist x y" -proof- - have *:"t \ s = {}" using assms(3) by auto - show ?thesis using separate_compact_closed[OF assms(2,1) *] - apply auto apply(rule_tac x=d in exI) apply auto apply (erule_tac x=y in ballE) - by (auto simp add: dist_commute) +proof - + have *: "t \ s = {}" + using assms(3) by auto + show ?thesis + using separate_compact_closed[OF assms(2,1) *] + apply auto + apply (rule_tac x=d in exI) + apply auto + apply (erule_tac x=y in ballE) + apply (auto simp add: dist_commute) + done qed subsection {* Intervals *} - -lemma interval: fixes a :: "'a::ordered_euclidean_space" shows - "{a <..< b} = {x::'a. \i\Basis. a\i < x\i \ x\i < b\i}" and - "{a .. b} = {x::'a. \i\Basis. a\i \ x\i \ x\i \ b\i}" - by(auto simp add:set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) - -lemma mem_interval: fixes a :: "'a::ordered_euclidean_space" shows - "x \ {a<.. (\i\Basis. a\i < x\i \ x\i < b\i)" - "x \ {a .. b} \ (\i\Basis. a\i \ x\i \ x\i \ b\i)" - using interval[of a b] by(auto simp add: set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) - -lemma interval_eq_empty: fixes a :: "'a::ordered_euclidean_space" shows - "({a <..< b} = {} \ (\i\Basis. b\i \ a\i))" (is ?th1) and - "({a .. b} = {} \ (\i\Basis. b\i < a\i))" (is ?th2) -proof- - { fix i x assume i:"i\Basis" and as:"b\i \ a\i" and x:"x\{a <..< b}" - hence "a \ i < x \ i \ x \ i < b \ i" unfolding mem_interval by auto - hence "a\i < b\i" by auto - hence False using as by auto } + +lemma interval: + fixes a :: "'a::ordered_euclidean_space" + shows "{a <..< b} = {x::'a. \i\Basis. a\i < x\i \ x\i < b\i}" + and "{a .. b} = {x::'a. \i\Basis. a\i \ x\i \ x\i \ b\i}" + by (auto simp add:set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) + +lemma mem_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "x \ {a<.. (\i\Basis. a\i < x\i \ x\i < b\i)" + and "x \ {a .. b} \ (\i\Basis. a\i \ x\i \ x\i \ b\i)" + using interval[of a b] + by (auto simp add: set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) + +lemma interval_eq_empty: + fixes a :: "'a::ordered_euclidean_space" + shows "({a <..< b} = {} \ (\i\Basis. b\i \ a\i))" (is ?th1) + and "({a .. b} = {} \ (\i\Basis. b\i < a\i))" (is ?th2) +proof - + { + fix i x + assume i: "i\Basis" and as:"b\i \ a\i" and x:"x\{a <..< b}" + then have "a \ i < x \ i \ x \ i < b \ i" + unfolding mem_interval by auto + then have "a\i < b\i" by auto + then have False using as by auto + } moreover - { assume as:"\i\Basis. \ (b\i \ a\i)" + { + assume as: "\i\Basis. \ (b\i \ a\i)" let ?x = "(1/2) *\<^sub>R (a + b)" - { fix i :: 'a assume i:"i\Basis" - have "a\i < b\i" using as[THEN bspec[where x=i]] i by auto - hence "a\i < ((1/2) *\<^sub>R (a+b)) \ i" "((1/2) *\<^sub>R (a+b)) \ i < b\i" - by (auto simp: inner_add_left) } - hence "{a <..< b} \ {}" using mem_interval(1)[of "?x" a b] by auto } + { + fix i :: 'a + assume i: "i \ Basis" + have "a\i < b\i" + using as[THEN bspec[where x=i]] i by auto + then have "a\i < ((1/2) *\<^sub>R (a+b)) \ i" "((1/2) *\<^sub>R (a+b)) \ i < b\i" + by (auto simp: inner_add_left) + } + then have "{a <..< b} \ {}" + using mem_interval(1)[of "?x" a b] by auto + } ultimately show ?th1 by blast - { fix i x assume i:"i\Basis" and as:"b\i < a\i" and x:"x\{a .. b}" - hence "a \ i \ x \ i \ x \ i \ b \ i" unfolding mem_interval by auto - hence "a\i \ b\i" by auto - hence False using as by auto } + { + fix i x + assume i: "i \ Basis" and as:"b\i < a\i" and x:"x\{a .. b}" + then have "a \ i \ x \ i \ x \ i \ b \ i" + unfolding mem_interval by auto + then have "a\i \ b\i" by auto + then have False using as by auto + } moreover - { assume as:"\i\Basis. \ (b\i < a\i)" + { + assume as:"\i\Basis. \ (b\i < a\i)" let ?x = "(1/2) *\<^sub>R (a + b)" - { fix i :: 'a assume i:"i\Basis" - have "a\i \ b\i" using as[THEN bspec[where x=i]] i by auto - hence "a\i \ ((1/2) *\<^sub>R (a+b)) \ i" "((1/2) *\<^sub>R (a+b)) \ i \ b\i" - by (auto simp: inner_add_left) } - hence "{a .. b} \ {}" using mem_interval(2)[of "?x" a b] by auto } + { + fix i :: 'a + assume i:"i \ Basis" + have "a\i \ b\i" + using as[THEN bspec[where x=i]] i by auto + then have "a\i \ ((1/2) *\<^sub>R (a+b)) \ i" "((1/2) *\<^sub>R (a+b)) \ i \ b\i" + by (auto simp: inner_add_left) + } + then have "{a .. b} \ {}" + using mem_interval(2)[of "?x" a b] by auto + } ultimately show ?th2 by blast qed -lemma interval_ne_empty: fixes a :: "'a::ordered_euclidean_space" shows - "{a .. b} \ {} \ (\i\Basis. a\i \ b\i)" and - "{a <..< b} \ {} \ (\i\Basis. a\i < b\i)" +lemma interval_ne_empty: + fixes a :: "'a::ordered_euclidean_space" + shows "{a .. b} \ {} \ (\i\Basis. a\i \ b\i)" + and "{a <..< b} \ {} \ (\i\Basis. a\i < b\i)" unfolding interval_eq_empty[of a b] by fastforce+ lemma interval_sing: @@ -5351,11 +6053,12 @@ unfolding set_eq_iff mem_interval eq_iff [symmetric] by (auto intro: euclidean_eqI simp: ex_in_conv) -lemma subset_interval_imp: fixes a :: "'a::ordered_euclidean_space" shows - "(\i\Basis. a\i \ c\i \ d\i \ b\i) \ {c .. d} \ {a .. b}" and - "(\i\Basis. a\i < c\i \ d\i < b\i) \ {c .. d} \ {a<..i\Basis. a\i \ c\i \ d\i \ b\i) \ {c<.. {a .. b}" and - "(\i\Basis. a\i \ c\i \ d\i \ b\i) \ {c<.. {a<..i\Basis. a\i \ c\i \ d\i \ b\i) \ {c .. d} \ {a .. b}" + and "(\i\Basis. a\i < c\i \ d\i < b\i) \ {c .. d} \ {a<..i\Basis. a\i \ c\i \ d\i \ b\i) \ {c<.. {a .. b}" + and "(\i\Basis. a\i \ c\i \ d\i \ b\i) \ {c<.. {a<.. {a .. b} \ (\i\Basis. c\i \ d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th1) and - "{c .. d} \ {a<.. (\i\Basis. c\i \ d\i) --> (\i\Basis. a\i < c\i \ d\i < b\i)" (is ?th2) and - "{c<.. {a .. b} \ (\i\Basis. c\i < d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th3) and - "{c<.. {a<.. (\i\Basis. c\i < d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th4) -proof- - show ?th1 unfolding subset_eq and Ball_def and mem_interval by (auto intro: order_trans) - show ?th2 unfolding subset_eq and Ball_def and mem_interval by (auto intro: le_less_trans less_le_trans order_trans less_imp_le) - { assume as: "{c<.. {a .. b}" "\i\Basis. c\i < d\i" - hence "{c<.. {}" unfolding interval_eq_empty by auto - fix i :: 'a assume i:"i\Basis" +lemma subset_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "{c .. d} \ {a .. b} \ (\i\Basis. c\i \ d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th1) + and "{c .. d} \ {a<.. (\i\Basis. c\i \ d\i) --> (\i\Basis. a\i < c\i \ d\i < b\i)" (is ?th2) + and "{c<.. {a .. b} \ (\i\Basis. c\i < d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th3) + and "{c<.. {a<.. (\i\Basis. c\i < d\i) --> (\i\Basis. a\i \ c\i \ d\i \ b\i)" (is ?th4) +proof - + show ?th1 + unfolding subset_eq and Ball_def and mem_interval + by (auto intro: order_trans) + show ?th2 + unfolding subset_eq and Ball_def and mem_interval + by (auto intro: le_less_trans less_le_trans order_trans less_imp_le) + { + assume as: "{c<.. {a .. b}" "\i\Basis. c\i < d\i" + then have "{c<.. {}" + unfolding interval_eq_empty by auto + fix i :: 'a + assume i: "i \ Basis" (** TODO combine the following two parts as done in the HOL_light version. **) - { let ?x = "(\j\Basis. (if j=i then ((min (a\j) (d\j))+c\j)/2 else (c\j+d\j)/2) *\<^sub>R j)::'a" + { + let ?x = "(\j\Basis. (if j=i then ((min (a\j) (d\j))+c\j)/2 else (c\j+d\j)/2) *\<^sub>R j)::'a" assume as2: "a\i > c\i" - { fix j :: 'a assume j:"j\Basis" - hence "c \ j < ?x \ j \ ?x \ j < d \ j" - apply(cases "j=i") using as(2)[THEN bspec[where x=j]] i - by (auto simp add: as2) } - hence "?x\{c<.. Basis" + then have "c \ j < ?x \ j \ ?x \ j < d \ j" + apply (cases "j = i") + using as(2)[THEN bspec[where x=j]] i + apply (auto simp add: as2) + done + } + then have "?x\{c<.. {a .. b}" + unfolding mem_interval + apply auto + apply (rule_tac x=i in bexI) + using as(2)[THEN bspec[where x=i]] and as2 i + apply auto + done + ultimately have False using as by auto + } + then have "a\i \ c\i" by (rule ccontr) auto + moreover + { + let ?x = "(\j\Basis. (if j=i then ((max (b\j) (c\j))+d\j)/2 else (c\j+d\j)/2) *\<^sub>R j)::'a" + assume as2: "b\i < d\i" + { + fix j :: 'a + assume "j\Basis" + then have "d \ j > ?x \ j \ ?x \ j > c \ j" + apply (cases "j = i") + using as(2)[THEN bspec[where x=j]] + apply (auto simp add: as2) + done + } + then have "?x\{c<..{a .. b}" - unfolding mem_interval apply auto apply(rule_tac x=i in bexI) - using as(2)[THEN bspec[where x=i]] and as2 i - by auto - ultimately have False using as by auto } - hence "a\i \ c\i" by(rule ccontr)auto - moreover - { let ?x = "(\j\Basis. (if j=i then ((max (b\j) (c\j))+d\j)/2 else (c\j+d\j)/2) *\<^sub>R j)::'a" - assume as2: "b\i < d\i" - { fix j :: 'a assume "j\Basis" - hence "d \ j > ?x \ j \ ?x \ j > c \ j" - apply(cases "j=i") using as(2)[THEN bspec[where x=j]] - by (auto simp add: as2) } - hence "?x\{c<..{a .. b}" - unfolding mem_interval apply auto apply(rule_tac x=i in bexI) + unfolding mem_interval + apply auto + apply (rule_tac x=i in bexI) using as(2)[THEN bspec[where x=i]] and as2 using i - by auto - ultimately have False using as by auto } - hence "b\i \ d\i" by(rule ccontr)auto + apply auto + done + ultimately have False using as by auto + } + then have "b\i \ d\i" by (rule ccontr) auto ultimately have "a\i \ c\i \ d\i \ b\i" by auto } note part1 = this show ?th3 - unfolding subset_eq and Ball_def and mem_interval - apply(rule,rule,rule,rule) - apply(rule part1) + unfolding subset_eq and Ball_def and mem_interval + apply (rule, rule, rule, rule) + apply (rule part1) unfolding subset_eq and Ball_def and mem_interval prefer 4 - apply auto - by(erule_tac x=xa in allE,erule_tac x=xa in allE,fastforce)+ - { assume as:"{c<.. {a<..i\Basis. c\i < d\i" - fix i :: 'a assume i:"i\Basis" - from as(1) have "{c<.. {a..b}" using interval_open_subset_closed[of a b] by auto - hence "a\i \ c\i \ d\i \ b\i" using part1 and as(2) using i by auto } note * = this - show ?th4 unfolding subset_eq and Ball_def and mem_interval - apply(rule,rule,rule,rule) apply(rule *) unfolding subset_eq and Ball_def and mem_interval prefer 4 - apply auto by(erule_tac x=xa in allE, simp)+ -qed - -lemma inter_interval: fixes a :: "'a::ordered_euclidean_space" shows - "{a .. b} \ {c .. d} = {(\i\Basis. max (a\i) (c\i) *\<^sub>R i) .. (\i\Basis. min (b\i) (d\i) *\<^sub>R i)}" - unfolding set_eq_iff and Int_iff and mem_interval by auto - -lemma disjoint_interval: fixes a::"'a::ordered_euclidean_space" shows - "{a .. b} \ {c .. d} = {} \ (\i\Basis. (b\i < a\i \ d\i < c\i \ b\i < c\i \ d\i < a\i))" (is ?th1) and - "{a .. b} \ {c<.. (\i\Basis. (b\i < a\i \ d\i \ c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th2) and - "{a<.. {c .. d} = {} \ (\i\Basis. (b\i \ a\i \ d\i < c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th3) and - "{a<.. {c<.. (\i\Basis. (b\i \ a\i \ d\i \ c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th4) -proof- + apply auto + apply (erule_tac x=xa in allE, erule_tac x=xa in allE, fastforce)+ + done + { + assume as: "{c<.. {a<..i\Basis. c\i < d\i" + fix i :: 'a + assume i:"i\Basis" + from as(1) have "{c<.. {a..b}" + using interval_open_subset_closed[of a b] by auto + then have "a\i \ c\i \ d\i \ b\i" + using part1 and as(2) using i by auto + } note * = this + show ?th4 + unfolding subset_eq and Ball_def and mem_interval + apply (rule, rule, rule, rule) + apply (rule *) + unfolding subset_eq and Ball_def and mem_interval + prefer 4 + apply auto + apply (erule_tac x=xa in allE, simp)+ + done +qed + +lemma inter_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "{a .. b} \ {c .. d} = {(\i\Basis. max (a\i) (c\i) *\<^sub>R i) .. (\i\Basis. min (b\i) (d\i) *\<^sub>R i)}" + unfolding set_eq_iff and Int_iff and mem_interval + by auto + +lemma disjoint_interval: + fixes a::"'a::ordered_euclidean_space" + shows "{a .. b} \ {c .. d} = {} \ (\i\Basis. (b\i < a\i \ d\i < c\i \ b\i < c\i \ d\i < a\i))" (is ?th1) + and "{a .. b} \ {c<.. (\i\Basis. (b\i < a\i \ d\i \ c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th2) + and "{a<.. {c .. d} = {} \ (\i\Basis. (b\i \ a\i \ d\i < c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th3) + and "{a<.. {c<.. (\i\Basis. (b\i \ a\i \ d\i \ c\i \ b\i \ c\i \ d\i \ a\i))" (is ?th4) +proof - let ?z = "(\i\Basis. (((max (a\i) (c\i)) + (min (b\i) (d\i))) / 2) *\<^sub>R i)::'a" have **: "\P Q. (\i :: 'a. i \ Basis \ Q ?z i \ P i) \ - (\i x :: 'a. i \ Basis \ P i \ Q x i) \ (\x. \i\Basis. Q x i) \ (\i\Basis. P i)" + (\i x :: 'a. i \ Basis \ P i \ Q x i) \ (\x. \i\Basis. Q x i) \ (\i\Basis. P i)" by blast note * = set_eq_iff Int_iff empty_iff mem_interval ball_conj_distrib[symmetric] eq_False ball_simps(10) show ?th1 unfolding * by (intro **) auto @@ -5450,8 +6198,9 @@ (* Moved interval_open_subset_closed a bit upwards *) lemma open_interval[intro]: - fixes a b :: "'a::ordered_euclidean_space" shows "open {a<..i\Basis. (\x. x\i) -` {a\i<..i})" by (intro open_INT finite_lessThan ballI continuous_open_vimage allI linear_continuous_at open_real_greaterThanLessThan finite_Basis bounded_linear_inner_left) @@ -5461,8 +6210,9 @@ qed lemma closed_interval[intro]: - fixes a b :: "'a::ordered_euclidean_space" shows "closed {a .. b}" -proof- + fixes a b :: "'a::ordered_euclidean_space" + shows "closed {a .. b}" +proof - have "closed (\i\Basis. (\x. x\i) -` {a\i .. b\i})" by (intro closed_INT ballI continuous_closed_vimage allI linear_continuous_at closed_real_atLeastAtMost finite_Basis bounded_linear_inner_left) @@ -5477,127 +6227,237 @@ proof(rule subset_antisym) show "?R \ ?L" using interval_open_subset_closed open_interval by (rule interior_maximal) -next - { fix x assume "x \ interior {a..b}" - then obtain s where s:"open s" "x \ s" "s \ {a..b}" .. - then obtain e where "e>0" and e:"\x'. dist x' x < e \ x' \ {a..b}" unfolding open_dist and subset_eq by auto - { fix i :: 'a assume i:"i\Basis" + { + fix x + assume "x \ interior {a..b}" + then obtain s where s: "open s" "x \ s" "s \ {a..b}" .. + then obtain e where "e>0" and e:"\x'. dist x' x < e \ x' \ {a..b}" + unfolding open_dist and subset_eq by auto + { + fix i :: 'a + assume i: "i \ Basis" have "dist (x - (e / 2) *\<^sub>R i) x < e" - "dist (x + (e / 2) *\<^sub>R i) x < e" - unfolding dist_norm apply auto - unfolding norm_minus_cancel using norm_Basis[OF i] `e>0` by auto - hence "a \ i \ (x - (e / 2) *\<^sub>R i) \ i" - "(x + (e / 2) *\<^sub>R i) \ i \ b \ i" + and "dist (x + (e / 2) *\<^sub>R i) x < e" + unfolding dist_norm + apply auto + unfolding norm_minus_cancel + using norm_Basis[OF i] `e>0` + apply auto + done + then have "a \ i \ (x - (e / 2) *\<^sub>R i) \ i" and "(x + (e / 2) *\<^sub>R i) \ i \ b \ i" using e[THEN spec[where x="x - (e/2) *\<^sub>R i"]] - and e[THEN spec[where x="x + (e/2) *\<^sub>R i"]] - unfolding mem_interval using i by blast+ - hence "a \ i < x \ i" and "x \ i < b \ i" - using `e>0` i by (auto simp: inner_diff_left inner_Basis inner_add_left) } - hence "x \ {a<.. ?R" .. -qed - -lemma bounded_closed_interval: fixes a :: "'a::ordered_euclidean_space" shows "bounded {a .. b}" -proof- + and e[THEN spec[where x="x + (e/2) *\<^sub>R i"]] + unfolding mem_interval + using i + by blast+ + then have "a \ i < x \ i" and "x \ i < b \ i" + using `e>0` i + by (auto simp: inner_diff_left inner_Basis inner_add_left) + } + then have "x \ {a<.. ?R" .. +qed + +lemma bounded_closed_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "bounded {a .. b}" +proof - let ?b = "\i\Basis. \a\i\ + \b\i\" - { fix x::"'a" assume x:"\i\Basis. a \ i \ x \ i \ x \ i \ b \ i" - { fix i :: 'a assume "i\Basis" - hence "\x\i\ \ \a\i\ + \b\i\" using x[THEN bspec[where x=i]] by auto } - hence "(\i\Basis. \x \ i\) \ ?b" apply-apply(rule setsum_mono) by auto - hence "norm x \ ?b" using norm_le_l1[of x] by auto } - thus ?thesis unfolding interval and bounded_iff by auto -qed - -lemma bounded_interval: fixes a :: "'a::ordered_euclidean_space" shows - "bounded {a .. b} \ bounded {a<..i\Basis. a \ i \ x \ i \ x \ i \ b \ i" + { + fix i :: 'a + assume "i \ Basis" + then have "\x\i\ \ \a\i\ + \b\i\" + using x[THEN bspec[where x=i]] by auto + } + then have "(\i\Basis. \x \ i\) \ ?b" + apply - + apply (rule setsum_mono) + apply auto + done + then have "norm x \ ?b" + using norm_le_l1[of x] by auto + } + then show ?thesis + unfolding interval and bounded_iff by auto +qed + +lemma bounded_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "bounded {a .. b} \ bounded {a<.. UNIV) \ ({a<.. UNIV)" +lemma not_interval_univ: + fixes a :: "'a::ordered_euclidean_space" + shows "({a .. b} \ UNIV) \ ({a<.. UNIV)" using bounded_interval[of a b] by auto -lemma compact_interval: fixes a :: "'a::ordered_euclidean_space" shows "compact {a .. b}" +lemma compact_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "compact {a .. b}" using bounded_closed_imp_seq_compact[of "{a..b}"] using bounded_interval[of a b] by (auto simp: compact_eq_seq_compact_metric) -lemma open_interval_midpoint: fixes a :: "'a::ordered_euclidean_space" - assumes "{a<.. {}" shows "((1/2) *\<^sub>R (a + b)) \ {a<..Basis" - hence "a \ i < ((1 / 2) *\<^sub>R (a + b)) \ i \ ((1 / 2) *\<^sub>R (a + b)) \ i < b \ i" - using assms[unfolded interval_ne_empty, THEN bspec[where x=i]] by (auto simp: inner_add_left) } - thus ?thesis unfolding mem_interval by auto -qed - -lemma open_closed_interval_convex: fixes x :: "'a::ordered_euclidean_space" - assumes x:"x \ {a<.. {a .. b}" and e:"0 < e" "e \ 1" +lemma open_interval_midpoint: + fixes a :: "'a::ordered_euclidean_space" + assumes "{a<.. {}" + shows "((1/2) *\<^sub>R (a + b)) \ {a<.. Basis" + then have "a \ i < ((1 / 2) *\<^sub>R (a + b)) \ i \ ((1 / 2) *\<^sub>R (a + b)) \ i < b \ i" + using assms[unfolded interval_ne_empty, THEN bspec[where x=i]] by (auto simp: inner_add_left) + } + then show ?thesis unfolding mem_interval by auto +qed + +lemma open_closed_interval_convex: + fixes x :: "'a::ordered_euclidean_space" + assumes x: "x \ {a<.. {a .. b}" + and e: "0 < e" "e \ 1" shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \ {a<..Basis" - have "a \ i = e * (a \ i) + (1 - e) * (a \ i)" unfolding left_diff_distrib by simp - also have "\ < e * (x \ i) + (1 - e) * (y \ i)" apply(rule add_less_le_mono) - using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all - using x unfolding mem_interval using i apply simp - using y unfolding mem_interval using i apply simp +proof - + { + fix i :: 'a + assume i: "i \ Basis" + have "a \ i = e * (a \ i) + (1 - e) * (a \ i)" + unfolding left_diff_distrib by simp + also have "\ < e * (x \ i) + (1 - e) * (y \ i)" + apply (rule add_less_le_mono) + using e unfolding mult_less_cancel_left and mult_le_cancel_left + apply simp_all + using x unfolding mem_interval using i + apply simp + using y unfolding mem_interval using i + apply simp done - finally have "a \ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i" unfolding inner_simps by auto - moreover { - have "b \ i = e * (b\i) + (1 - e) * (b\i)" unfolding left_diff_distrib by simp - also have "\ > e * (x \ i) + (1 - e) * (y \ i)" apply(rule add_less_le_mono) - using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all - using x unfolding mem_interval using i apply simp - using y unfolding mem_interval using i apply simp - done - finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i < b \ i" unfolding inner_simps by auto - } ultimately have "a \ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i \ (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i < b \ i" by auto } - thus ?thesis unfolding mem_interval by auto -qed - -lemma closure_open_interval: fixes a :: "'a::ordered_euclidean_space" + finally have "a \ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i" + unfolding inner_simps by auto + moreover + { + have "b \ i = e * (b\i) + (1 - e) * (b\i)" + unfolding left_diff_distrib by simp + also have "\ > e * (x \ i) + (1 - e) * (y \ i)" + apply (rule add_less_le_mono) + using e unfolding mult_less_cancel_left and mult_le_cancel_left + apply simp_all + using x + unfolding mem_interval + using i + apply simp + using y + unfolding mem_interval + using i + apply simp + done + finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i < b \ i" + unfolding inner_simps by auto + } + ultimately have "a \ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i \ (e *\<^sub>R x + (1 - e) *\<^sub>R y) \ i < b \ i" + by auto + } + then show ?thesis + unfolding mem_interval by auto +qed + +lemma closure_open_interval: + fixes a :: "'a::ordered_euclidean_space" assumes "{a<.. {}" shows "closure {a<.. {a .. b}" - def f == "\n::nat. x + (inverse (real n + 1)) *\<^sub>R (?c - x)" - { fix n assume fn:"f n < b \ a < f n \ f n = x" and xc:"x \ ?c" - have *:"0 < inverse (real n + 1)" "inverse (real n + 1) \ 1" unfolding inverse_le_1_iff by auto + { + fix x + assume as:"x \ {a .. b}" + def f \ "\n::nat. x + (inverse (real n + 1)) *\<^sub>R (?c - x)" + { + fix n + assume fn: "f n < b \ a < f n \ f n = x" and xc: "x \ ?c" + have *: "0 < inverse (real n + 1)" "inverse (real n + 1) \ 1" + unfolding inverse_le_1_iff by auto have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x = x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)" by (auto simp add: algebra_simps) - hence "f n < b" and "a < f n" using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] unfolding f_def by auto - hence False using fn unfolding f_def using xc by auto } + then have "f n < b" and "a < f n" + using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] + unfolding f_def by auto + then have False + using fn unfolding f_def using xc by auto + } moreover - { assume "\ (f ---> x) sequentially" - { fix e::real assume "e>0" - hence "\N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto - then obtain N::nat where "inverse (real (N + 1)) < e" by auto - hence "\n\N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero) - hence "\N::nat. \n\N. inverse (real n + 1) < e" by auto } - hence "((\n. inverse (real n + 1)) ---> 0) sequentially" + { + assume "\ (f ---> x) sequentially" + { + fix e :: real + assume "e > 0" + then have "\N::nat. inverse (real (N + 1)) < e" + using real_arch_inv[of e] + apply (auto simp add: Suc_pred') + apply (rule_tac x="n - 1" in exI) + apply auto + done + then obtain N :: nat where "inverse (real (N + 1)) < e" + by auto + then have "\n\N. inverse (real n + 1) < e" + apply auto + apply (metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans + real_of_nat_Suc real_of_nat_Suc_gt_zero) + done + then have "\N::nat. \n\N. inverse (real n + 1) < e" by auto + } + then have "((\n. inverse (real n + 1)) ---> 0) sequentially" unfolding LIMSEQ_def by(auto simp add: dist_norm) - hence "(f ---> x) sequentially" unfolding f_def + then have "(f ---> x) sequentially" + unfolding f_def using tendsto_add[OF tendsto_const, of "\n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x] - using tendsto_scaleR [OF _ tendsto_const, of "\n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto } + using tendsto_scaleR [OF _ tendsto_const, of "\n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] + by auto + } ultimately have "x \ closure {a<..a. s \ {-a<..0" and b:"\x\s. norm x \ b" using assms[unfolded bounded_pos] by auto + using as and open_interval_midpoint[OF assms] + unfolding closure_def + unfolding islimpt_sequential + by (cases "x=?c") auto + } + then show ?thesis + using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast +qed + +lemma bounded_subset_open_interval_symmetric: + fixes s::"('a::ordered_euclidean_space) set" + assumes "bounded s" + shows "\a. s \ {-a<..0" and b: "\x\s. norm x \ b" + using assms[unfolded bounded_pos] by auto def a \ "(\i\Basis. (b + 1) *\<^sub>R i)::'a" - { fix x assume "x\s" - fix i :: 'a assume i:"i\Basis" - hence "(-a)\i < x\i" and "x\i < a\i" using b[THEN bspec[where x=x], OF `x\s`] - and Basis_le_norm[OF i, of x] unfolding inner_simps and a_def by auto } - thus ?thesis by(auto intro: exI[where x=a] simp add: eucl_less[where 'a='a]) + { + fix x + assume "x \ s" + fix i :: 'a + assume i: "i \ Basis" + then have "(-a)\i < x\i" and "x\i < a\i" + using b[THEN bspec[where x=x], OF `x\s`] + using Basis_le_norm[OF i, of x] + unfolding inner_simps and a_def + by auto + } + then show ?thesis + by (auto intro: exI[where x=a] simp add: eucl_less[where 'a='a]) qed lemma bounded_subset_open_interval: @@ -5608,14 +6468,16 @@ lemma bounded_subset_closed_interval_symmetric: fixes s :: "('a::ordered_euclidean_space) set" assumes "bounded s" shows "\a. s \ {-a .. a}" -proof- - obtain a where "s \ {- a<.. {- a<.. (\a b. s \ {a .. b})" + shows "bounded s \ (\a b. s \ {a .. b})" using bounded_subset_closed_interval_symmetric[of s] by auto lemma frontier_closed_interval: @@ -5626,44 +6488,74 @@ lemma frontier_open_interval: fixes a b :: "'a::ordered_euclidean_space" shows "frontier {a<.. {}" shows "{a<.. {c .. d} = {} \ {a<.. {c<.. {}" + shows "{a<.. {c .. d} = {} \ {a<.. {c<..i\Basis. x\i \ b\i}" -proof- - { fix i :: 'a assume i:"i\Basis" - fix x::"'a" assume x:"\e>0. \x'\{x. \i\Basis. x \ i \ b \ i}. x' \ x \ dist x' x < e" - { assume "x\i > b\i" +proof - + { + fix i :: 'a + assume i: "i \ Basis" + fix x :: "'a" + assume x: "\e>0. \x'\{x. \i\Basis. x \ i \ b \ i}. x' \ x \ dist x' x < e" + { + assume "x\i > b\i" then obtain y where "y \ i \ b \ i" "y \ x" "dist y x < x\i - b\i" using x[THEN spec[where x="x\i - b\i"]] using i by auto - hence False using Basis_le_norm[OF i, of "y - x"] unfolding dist_norm inner_simps using i - by auto } - hence "x\i \ b\i" by(rule ccontr)auto } - thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast -qed - -lemma closed_interval_right: fixes a::"'a::euclidean_space" + then have False + using Basis_le_norm[OF i, of "y - x"] + unfolding dist_norm inner_simps + using i + by auto + } + then have "x\i \ b\i" by (rule ccontr)auto + } + then show ?thesis + unfolding closed_limpt unfolding islimpt_approachable by blast +qed + +lemma closed_interval_right: + fixes a :: "'a::euclidean_space" shows "closed {x::'a. \i\Basis. a\i \ x\i}" -proof- - { fix i :: 'a assume i:"i\Basis" - fix x::"'a" assume x:"\e>0. \x'\{x. \i\Basis. a \ i \ x \ i}. x' \ x \ dist x' x < e" - { assume "a\i > x\i" +proof - + { + fix i :: 'a + assume i: "i \ Basis" + fix x :: "'a" + assume x: "\e>0. \x'\{x. \i\Basis. a \ i \ x \ i}. x' \ x \ dist x' x < e" + { + assume "a\i > x\i" then obtain y where "a \ i \ y \ i" "y \ x" "dist y x < a\i - x\i" using x[THEN spec[where x="a\i - x\i"]] i by auto - hence False using Basis_le_norm[OF i, of "y - x"] unfolding dist_norm inner_simps by auto } - hence "a\i \ x\i" by(rule ccontr)auto } - thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast + then have False + using Basis_le_norm[OF i, of "y - x"] + unfolding dist_norm inner_simps + by auto + } + then have "a\i \ x\i" by (rule ccontr) auto + } + then show ?thesis + unfolding closed_limpt unfolding islimpt_approachable by blast qed lemma open_box: "open (box a b)" @@ -5678,15 +6570,18 @@ instance euclidean_space \ second_countable_topology proof def a \ "\f :: 'a \ (real \ real). \i\Basis. fst (f i) *\<^sub>R i" - then have a: "\f. (\i\Basis. fst (f i) *\<^sub>R i) = a f" by simp + then have a: "\f. (\i\Basis. fst (f i) *\<^sub>R i) = a f" + by simp def b \ "\f :: 'a \ (real \ real). \i\Basis. snd (f i) *\<^sub>R i" - then have b: "\f. (\i\Basis. snd (f i) *\<^sub>R i) = b f" by simp + then have b: "\f. (\i\Basis. snd (f i) *\<^sub>R i) = b f" + by simp def B \ "(\f. box (a f) (b f)) ` (Basis \\<^sub>E (\ \ \))" have "Ball B open" by (simp add: B_def open_box) moreover have "(\A. open A \ (\B'\B. \B' = A))" proof safe - fix A::"'a set" assume "open A" + fix A::"'a set" + assume "open A" show "\B'\B. \B' = A" apply (rule exI[of _ "{b\B. b \ A}"]) apply (subst (3) open_UNION_box[OF `open A`]) @@ -5694,9 +6589,11 @@ done qed ultimately - have "topological_basis B" unfolding topological_basis_def by blast + have "topological_basis B" + unfolding topological_basis_def by blast moreover - have "countable B" unfolding B_def + have "countable B" + unfolding B_def by (intro countable_image countable_PiE finite_Basis countable_SIGMA countable_rat) ultimately show "\B::'a set set. countable B \ open = generate_topology B" by (blast intro: topological_basis_imp_subbasis) @@ -5728,25 +6625,29 @@ subsection {* Closure of halfspaces and hyperplanes *} lemma isCont_open_vimage: - assumes "\x. isCont f x" and "open s" shows "open (f -` s)" + assumes "\x. isCont f x" + and "open s" + shows "open (f -` s)" proof - from assms(1) have "continuous_on UNIV f" unfolding isCont_def continuous_on_def by simp - hence "open {x \ UNIV. f x \ s}" + then have "open {x \ UNIV. f x \ s}" using open_UNIV `open s` by (rule continuous_open_preimage) - thus "open (f -` s)" + then show "open (f -` s)" by (simp add: vimage_def) qed lemma isCont_closed_vimage: - assumes "\x. isCont f x" and "closed s" shows "closed (f -` s)" + assumes "\x. isCont f x" + and "closed s" + shows "closed (f -` s)" using assms unfolding closed_def vimage_Compl [symmetric] by (rule isCont_open_vimage) lemma open_Collect_less: fixes f g :: "'a::t2_space \ real" assumes f: "\x. isCont f x" - assumes g: "\x. isCont g x" + and g: "\x. isCont g x" shows "open {x. f x < g x}" proof - have "open ((\x. g x - f x) -` {0<..})" @@ -5760,7 +6661,7 @@ lemma closed_Collect_le: fixes f g :: "'a::t2_space \ real" assumes f: "\x. isCont f x" - assumes g: "\x. isCont g x" + and g: "\x. isCont g x" shows "closed {x. f x \ g x}" proof - have "closed ((\x. g x - f x) -` {0..})" @@ -5774,12 +6675,12 @@ lemma closed_Collect_eq: fixes f g :: "'a::t2_space \ 'b::t2_space" assumes f: "\x. isCont f x" - assumes g: "\x. isCont g x" + and g: "\x. isCont g x" shows "closed {x. f x = g x}" proof - have "open {(x::'b, y::'b). x \ y}" unfolding open_prod_def by (auto dest!: hausdorff) - hence "closed {(x::'b, y::'b). x = y}" + then have "closed {(x::'b, y::'b). x = y}" unfolding closed_def split_def Collect_neg_eq . with isCont_Pair [OF f g] have "closed ((\x. (f x, g x)) -` {(x, y). x = y})" @@ -5800,12 +6701,10 @@ lemma closed_hyperplane: "closed {x. inner a x = b}" by (simp add: closed_Collect_eq) -lemma closed_halfspace_component_le: - shows "closed {x::'a::euclidean_space. x\i \ a}" +lemma closed_halfspace_component_le: "closed {x::'a::euclidean_space. x\i \ a}" by (simp add: closed_Collect_le) -lemma closed_halfspace_component_ge: - shows "closed {x::'a::euclidean_space. x\i \ a}" +lemma closed_halfspace_component_ge: "closed {x::'a::euclidean_space. x\i \ a}" by (simp add: closed_Collect_le) text {* Openness of halfspaces. *} @@ -5816,12 +6715,10 @@ lemma open_halfspace_gt: "open {x. inner a x > b}" by (simp add: open_Collect_less) -lemma open_halfspace_component_lt: - shows "open {x::'a::euclidean_space. x\i < a}" +lemma open_halfspace_component_lt: "open {x::'a::euclidean_space. x\i < a}" by (simp add: open_Collect_less) -lemma open_halfspace_component_gt: - shows "open {x::'a::euclidean_space. x\i > a}" +lemma open_halfspace_component_gt: "open {x::'a::euclidean_space. x\i > a}" by (simp add: open_Collect_less) text{* Instantiation for intervals on @{text ordered_euclidean_space} *} @@ -5829,22 +6726,22 @@ lemma eucl_lessThan_eq_halfspaces: fixes a :: "'a\ordered_euclidean_space" shows "{..i\Basis. {x. x \ i < a \ i})" - by (auto simp: eucl_less[where 'a='a]) + by (auto simp: eucl_less[where 'a='a]) lemma eucl_greaterThan_eq_halfspaces: fixes a :: "'a\ordered_euclidean_space" shows "{a<..} = (\i\Basis. {x. a \ i < x \ i})" - by (auto simp: eucl_less[where 'a='a]) + by (auto simp: eucl_less[where 'a='a]) lemma eucl_atMost_eq_halfspaces: fixes a :: "'a\ordered_euclidean_space" shows "{.. a} = (\i\Basis. {x. x \ i \ a \ i})" - by (auto simp: eucl_le[where 'a='a]) + by (auto simp: eucl_le[where 'a='a]) lemma eucl_atLeast_eq_halfspaces: fixes a :: "'a\ordered_euclidean_space" shows "{a ..} = (\i\Basis. {x. a \ i \ x \ i})" - by (auto simp: eucl_le[where 'a='a]) + by (auto simp: eucl_le[where 'a='a]) lemma open_eucl_lessThan[simp, intro]: fixes a :: "'a\ordered_euclidean_space" @@ -5870,26 +6767,37 @@ text {* This gives a simple derivation of limit component bounds. *} -lemma Lim_component_le: fixes f :: "'a \ 'b::euclidean_space" - assumes "(f ---> l) net" "\ (trivial_limit net)" "eventually (\x. f(x)\i \ b) net" +lemma Lim_component_le: + fixes f :: "'a \ 'b::euclidean_space" + assumes "(f ---> l) net" + and "\ (trivial_limit net)" + and "eventually (\x. f(x)\i \ b) net" shows "l\i \ b" by (rule tendsto_le[OF assms(2) tendsto_const tendsto_inner[OF assms(1) tendsto_const] assms(3)]) -lemma Lim_component_ge: fixes f :: "'a \ 'b::euclidean_space" - assumes "(f ---> l) net" "\ (trivial_limit net)" "eventually (\x. b \ (f x)\i) net" +lemma Lim_component_ge: + fixes f :: "'a \ 'b::euclidean_space" + assumes "(f ---> l) net" + and "\ (trivial_limit net)" + and "eventually (\x. b \ (f x)\i) net" shows "b \ l\i" by (rule tendsto_le[OF assms(2) tendsto_inner[OF assms(1) tendsto_const] tendsto_const assms(3)]) -lemma Lim_component_eq: fixes f :: "'a \ 'b::euclidean_space" - assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\x. f(x)\i = b) net" +lemma Lim_component_eq: + fixes f :: "'a \ 'b::euclidean_space" + assumes net: "(f ---> l) net" "~(trivial_limit net)" + and ev:"eventually (\x. f(x)\i = b) net" shows "l\i = b" using ev[unfolded order_eq_iff eventually_conj_iff] - using Lim_component_ge[OF net, of b i] and Lim_component_le[OF net, of i b] by auto - -text{* Limits relative to a union. *} + using Lim_component_ge[OF net, of b i] + using Lim_component_le[OF net, of i b] + by auto + +text {* Limits relative to a union. *} lemma eventually_within_Un: - "eventually P (at x within (s \ t)) \ eventually P (at x within s) \ eventually P (at x within t)" + "eventually P (at x within (s \ t)) \ + eventually P (at x within s) \ eventually P (at x within t)" unfolding eventually_at_filter by (auto elim!: eventually_rev_mp) @@ -5900,25 +6808,27 @@ by (auto simp add: eventually_within_Un) lemma Lim_topological: - "(f ---> l) net \ - trivial_limit net \ - (\S. open S \ l \ S \ eventually (\x. f x \ S) net)" + "(f ---> l) net \ + trivial_limit net \ (\S. open S \ l \ S \ eventually (\x. f x \ S) net)" unfolding tendsto_def trivial_limit_eq by auto -text{* Some more convenient intermediate-value theorem formulations. *} +text{* Some more convenient intermediate-value theorem formulations. *} lemma connected_ivt_hyperplane: assumes "connected s" "x \ s" "y \ s" "inner a x \ b" "b \ inner a y" shows "\z \ s. inner a z = b" -proof(rule ccontr) +proof (rule ccontr) assume as:"\ (\z\s. inner a z = b)" let ?A = "{x. inner a x < b}" let ?B = "{x. inner a x > b}" - have "open ?A" "open ?B" using open_halfspace_lt and open_halfspace_gt by auto + have "open ?A" "open ?B" + using open_halfspace_lt and open_halfspace_gt by auto moreover have "?A \ ?B = {}" by auto moreover have "s \ ?A \ ?B" using as by auto ultimately show False - using assms(1)[unfolded connected_def not_ex, THEN spec[where x="?A"], THEN spec[where x="?B"]] and assms(2-5) + using assms(1)[unfolded connected_def not_ex, + THEN spec[where x="?A"], THEN spec[where x="?B"]] + using assms(2-5) by auto qed @@ -5939,38 +6849,38 @@ definition homeomorphic :: "'a::topological_space set \ 'b::topological_space set \ bool" - (infixr "homeomorphic" 60) where - "s homeomorphic t \ (\f g. homeomorphism s t f g)" + (infixr "homeomorphic" 60) + where "s homeomorphic t \ (\f g. homeomorphism s t f g)" lemma homeomorphic_refl: "s homeomorphic s" unfolding homeomorphic_def unfolding homeomorphism_def using continuous_on_id - apply(rule_tac x = "(\x. x)" in exI) - apply(rule_tac x = "(\x. x)" in exI) + apply (rule_tac x = "(\x. x)" in exI) + apply (rule_tac x = "(\x. x)" in exI) apply blast done lemma homeomorphic_sym: "s homeomorphic t \ t homeomorphic s" unfolding homeomorphic_def unfolding homeomorphism_def - by blast + by blast lemma homeomorphic_trans: - assumes "s homeomorphic t" "t homeomorphic u" + assumes "s homeomorphic t" + and "t homeomorphic u" shows "s homeomorphic u" -proof- - obtain f1 g1 where fg1:"\x\s. g1 (f1 x) = x" "f1 ` s = t" - "continuous_on s f1" "\y\t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1" +proof - + obtain f1 g1 where fg1: "\x\s. g1 (f1 x) = x" "f1 ` s = t" + "continuous_on s f1" "\y\t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1" using assms(1) unfolding homeomorphic_def homeomorphism_def by auto - obtain f2 g2 where fg2:"\x\t. g2 (f2 x) = x" "f2 ` t = u" "continuous_on t f2" - "\y\u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2" + obtain f2 g2 where fg2: "\x\t. g2 (f2 x) = x" "f2 ` t = u" "continuous_on t f2" + "\y\u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2" using assms(2) unfolding homeomorphic_def homeomorphism_def by auto - { fix x assume "x\s" - hence "(g1 \ g2) ((f2 \ f1) x) = x" + then have "(g1 \ g2) ((f2 \ f1) x) = x" using fg1(1)[THEN bspec[where x=x]] and fg2(1)[THEN bspec[where x="f1 x"]] and fg1(2) by auto } @@ -5978,10 +6888,11 @@ using fg1(2) fg2(2) by auto moreover have "continuous_on s (f2 \ f1)" using continuous_on_compose[OF fg1(3)] and fg2(3) unfolding fg1(2) by auto - moreover { + moreover + { fix y assume "y\u" - hence "(f2 \ f1) ((g1 \ g2) y) = y" + then have "(f2 \ f1) ((g1 \ g2) y) = y" using fg2(4)[THEN bspec[where x=y]] and fg1(4)[THEN bspec[where x="g2 y"]] and fg2(5) by auto } @@ -6030,17 +6941,19 @@ fixes f :: "'a::topological_space \ 'b::t2_space" assumes "compact s" "continuous_on s f" "f ` s = t" "inj_on f s" shows "\g. homeomorphism s t f g" -proof- +proof - def g \ "\x. SOME y. y\s \ f y = x" have g: "\x\s. g (f x) = x" using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto { - fix y assume "y\t" - then obtain x where x:"f x = y" "x\s" using assms(3) by auto - hence "g (f x) = x" using g by auto - hence "f (g y) = y" unfolding x(1)[THEN sym] by auto + fix y + assume "y \ t" + then obtain x where x:"f x = y" "x\s" + using assms(3) by auto + then have "g (f x) = x" using g by auto + then have "f (g y) = y" unfolding x(1)[THEN sym] by auto } - hence g':"\x\t. f (g x) = x" by auto + then have g':"\x\t. f (g x) = x" by auto moreover { fix x @@ -6055,7 +6968,7 @@ then obtain y where y:"y\t" "g y = x" by auto then obtain x' where x':"x'\s" "f x' = y" using assms(3) by auto - hence "x \ s" + then have "x \ s" unfolding g_def using someI2[of "\b. b\s \ f b = y" x' "\x. x\s"] unfolding y(2)[THEN sym] and g_def @@ -6063,7 +6976,7 @@ } ultimately have "x\s \ x \ g ` t" .. } - hence "g ` t = s" by auto + then have "g ` t = s" by auto ultimately show ?thesis unfolding homeomorphism_def homeomorphic_def apply (rule_tac x=g in exI) @@ -6074,21 +6987,21 @@ lemma homeomorphic_compact: fixes f :: "'a::topological_space \ 'b::t2_space" - shows "compact s \ continuous_on s f \ (f ` s = t) \ inj_on f s - \ s homeomorphic t" + shows "compact s \ continuous_on s f \ (f ` s = t) \ inj_on f s \ s homeomorphic t" unfolding homeomorphic_def by (metis homeomorphism_compact) -text{* Preservation of topological properties. *} +text{* Preservation of topological properties. *} lemma homeomorphic_compactness: "s homeomorphic t \ (compact s \ compact t)" unfolding homeomorphic_def homeomorphism_def by (metis compact_continuous_image) -text{* Results on translation, scaling etc. *} +text{* Results on translation, scaling etc. *} lemma homeomorphic_scaling: fixes s :: "'a::real_normed_vector set" - assumes "c \ 0" shows "s homeomorphic ((\x. c *\<^sub>R x) ` s)" + assumes "c \ 0" + shows "s homeomorphic ((\x. c *\<^sub>R x) ` s)" unfolding homeomorphic_minimal apply (rule_tac x="\x. c *\<^sub>R x" in exI) apply (rule_tac x="\x. (1 / c) *\<^sub>R x" in exI) @@ -6110,7 +7023,7 @@ fixes s :: "'a::real_normed_vector set" assumes "c \ 0" shows "s homeomorphic ((\x. a + c *\<^sub>R x) ` s)" -proof- +proof - have *: "op + a ` op *\<^sub>R c ` s = (\x. a + c *\<^sub>R x) ` s" by auto show ?thesis using homeomorphic_trans @@ -6124,8 +7037,8 @@ fixes a b ::"'a::real_normed_vector" assumes "0 < d" "0 < e" shows "(ball a d) homeomorphic (ball b e)" (is ?th) - "(cball a d) homeomorphic (cball b e)" (is ?cth) -proof- + and "(cball a d) homeomorphic (cball b e)" (is ?cth) +proof - show ?th unfolding homeomorphic_minimal apply(rule_tac x="\x. b + (e/d) *\<^sub>R (x - a)" in exI) apply(rule_tac x="\x. a + (d/e) *\<^sub>R (x - b)" in exI) @@ -6133,7 +7046,6 @@ apply (auto intro!: continuous_on_intros simp: dist_commute dist_norm pos_divide_less_eq mult_strict_left_mono) done -next show ?cth unfolding homeomorphic_minimal apply(rule_tac x="\x. b + (e/d) *\<^sub>R (x - a)" in exI) apply(rule_tac x="\x. a + (d/e) *\<^sub>R (x - b)" in exI) @@ -6173,9 +7085,9 @@ using `N \ n` N unfolding f.diff[THEN sym] by auto finally have "norm (x n - x N) < d" using `e>0` by simp } - hence "\N. \n\N. norm (x n - x N) < d" by auto + then have "\N. \n\N. norm (x n - x N) < d" by auto } - thus ?thesis unfolding cauchy and dist_norm by auto + then show ?thesis unfolding cauchy and dist_norm by auto qed lemma complete_isometric_image: @@ -6190,18 +7102,18 @@ { fix g assume as:"\n::nat. g n \ f ` s" and cfg:"Cauchy g" - then obtain x where "\n. x n \ s \ g n = f (x n)" + then obtain x where "\n. x n \ s \ g n = f (x n)" using choice[of "\ n xa. xa \ s \ g n = f xa"] by auto - hence x:"\n. x n \ s" "\n. g n = f (x n)" by auto - hence "f \ x = g" unfolding fun_eq_iff by auto + then have x:"\n. x n \ s" "\n. g n = f (x n)" by auto + then have "f \ x = g" unfolding fun_eq_iff by auto then obtain l where "l\s" and l:"(x ---> l) sequentially" using cs[unfolded complete_def, THEN spec[where x="x"]] using cauchy_isometric[OF `0l\f ` s. (g ---> l) sequentially" + then have "\l\f ` s. (g ---> l) sequentially" using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l] unfolding `f \ x = g` by auto } - thus ?thesis unfolding complete_def by auto + then show ?thesis unfolding complete_def by auto qed lemma injective_imp_isometric: @@ -6214,10 +7126,10 @@ { fix x assume "x \ s" - hence "x = 0" using True by auto - hence "norm x \ norm (f x)" by auto + then have "x = 0" using True by auto + then have "norm x \ norm (f x)" by auto } - thus ?thesis by (auto intro!: exI[where x=1]) + then show ?thesis by (auto intro!: exI[where x=1]) next interpret f: bounded_linear f by fact case False @@ -6229,7 +7141,7 @@ have "?S'' = frontier(cball 0 (norm a))" unfolding frontier_cball and dist_norm by auto - hence "compact ?S''" + then have "compact ?S''" using compact_frontier[OF compact_cball, of 0 "norm a"] by auto moreover have "?S' = s \ ?S''" by auto ultimately have "compact ?S'" @@ -6237,12 +7149,13 @@ moreover have *:"f ` ?S' = ?S" by auto ultimately have "compact ?S" using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto - hence "closed ?S" using compact_imp_closed by auto + then have "closed ?S" using compact_imp_closed by auto moreover have "?S \ {}" using a by auto ultimately obtain b' where "b'\?S" "\y\?S. norm b' \ norm y" using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto - then obtain b where "b\s" and ba:"norm b = norm a" - and b:"\x\{x \ s. norm x = norm a}. norm (f b) \ norm (f x)" + then obtain b where "b\s" + and ba: "norm b = norm a" + and b: "\x\{x \ s. norm x = norm a}. norm (f b) \ norm (f x)" unfolding *[THEN sym] unfolding image_iff by auto let ?e = "norm (f b) / norm b" @@ -6258,21 +7171,21 @@ { fix x assume "x\s" - hence "norm (f b) / norm b * norm x \ norm (f x)" + then have "norm (f b) / norm b * norm x \ norm (f x)" proof (cases "x=0") case True - thus "norm (f b) / norm b * norm x \ norm (f x)" by auto + then show "norm (f b) / norm b * norm x \ norm (f x)" by auto next case False - hence *:"0 < norm a / norm x" + then have *: "0 < norm a / norm x" using `a\0` unfolding zero_less_norm_iff[THEN sym] by (simp only: divide_pos_pos) have "\c. \x\s. c *\<^sub>R x \ s" using s[unfolded subspace_def] by auto - hence "(norm a / norm x) *\<^sub>R x \ {x \ s. norm x = norm a}" + then have "(norm a / norm x) *\<^sub>R x \ {x \ s. norm x = norm a}" using `x\s` and `x\0` by auto - thus "norm (f b) / norm b * norm x \ norm (f x)" + then show "norm (f b) / norm b * norm x \ norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]] unfolding f.scaleR and ba using `x\0` `a\0` by (auto simp add: mult_commute pos_le_divide_eq pos_divide_le_eq) @@ -6283,10 +7196,10 @@ lemma closed_injective_image_subspace: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" - assumes "subspace s" "bounded_linear f" "\x\s. f x = 0 --> x = 0" "closed s" + assumes "subspace s" "bounded_linear f" "\x\s. f x = 0 \ x = 0" "closed s" shows "closed(f ` s)" -proof- - obtain e where "e>0" and e:"\x\s. e * norm x \ norm (f x)" +proof - + obtain e where "e > 0" and e: "\x\s. e * norm x \ norm (f x)" using injective_imp_isometric[OF assms(4,1,2,3)] by auto show ?thesis using complete_isometric_image[OF `e>0` assms(1,2) e] and assms(4) @@ -6320,55 +7233,58 @@ moreover { fix x::"'a" assume "x \ ?A" - hence "finite d" "x \ ?A" using assms by(auto intro: finite_subset[OF _ finite_Basis]) + then have "finite d" "x \ ?A" + using assms by (auto intro: finite_subset[OF _ finite_Basis]) from this d have "x \ span d" proof (induct d arbitrary: x) case empty - hence "x=0" + then have "x = 0" apply (rule_tac euclidean_eqI) apply auto done - thus ?case + then show ?case using subspace_0[OF subspace_span[of "{}"]] by auto next case (insert k F) - hence *:"\i\Basis. i \ insert k F \ x \ i = 0" by auto - have **:"F \ insert k F" by auto + then have *: "\i\Basis. i \ insert k F \ x \ i = 0" by auto + have **: "F \ insert k F" by auto def y \ "x - (x\k) *\<^sub>R k" - have y:"x = y + (x\k) *\<^sub>R k" unfolding y_def by auto + have y: "x = y + (x\k) *\<^sub>R k" unfolding y_def by auto { fix i assume i': "i \ F" "i \ Basis" - hence "y \ i = 0" unfolding y_def + then have "y \ i = 0" unfolding y_def using *[THEN bspec[where x=i]] insert by (auto simp: inner_simps inner_Basis) } - hence "y \ span F" using insert by auto - hence "y \ span (insert k F)" + then have "y \ span F" using insert by auto + then have "y \ span (insert k F)" using span_mono[of F "insert k F"] using assms by auto moreover have "k \ span (insert k F)" by(rule span_superset, auto) - hence "(x\k) *\<^sub>R k \ span (insert k F)" + then have "(x\k) *\<^sub>R k \ span (insert k F)" using span_mul by auto ultimately have "y + (x\k) *\<^sub>R k \ span (insert k F)" using span_add by auto - thus ?case using y by auto + then show ?case using y by auto qed } - hence "?A \ span d" by auto + then have "?A \ span d" by auto moreover { fix x assume "x \ d" - hence "x \ ?D" using assms by auto + then have "x \ ?D" using assms by auto } - hence "independent d" + then have "independent d" using independent_mono[OF independent_Basis, of d] and assms by auto moreover have "d \ ?D" unfolding subset_eq using assms by auto ultimately show ?thesis using dim_unique[of d ?A] by auto qed -text{* Hence closure and completeness of all subspaces. *} - -lemma ex_card: assumes "n \ card A" shows "\S\A. card S = n" +text{* Hence closure and completeness of all subspaces. *} + +lemma ex_card: + assumes "n \ card A" + shows "\S\A. card S = n" proof cases assume "finite A" from ex_bij_betw_nat_finite[OF this] guess f .. @@ -6425,7 +7341,7 @@ using dim_subset[of "closure s" "span s"] unfolding dim_span by auto - thus ?thesis using dim_subset[OF closure_subset, of s] + then show ?thesis using dim_subset[OF closure_subset, of s] by auto qed @@ -6462,34 +7378,54 @@ (if {a .. b} = {} then {} else (if 0 \ m then {m *\<^sub>R a + c .. m *\<^sub>R b + c} else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))" -proof(cases "m=0") - { fix x assume "x \ c" "c \ x" - hence "x=c" unfolding eucl_le[where 'a='a] apply- - apply(subst euclidean_eq_iff) by (auto intro: order_antisym) } +proof (cases "m = 0") + { + fix x + assume "x \ c" "c \ x" + then have "x = c" + unfolding eucl_le[where 'a='a] + apply - + apply (subst euclidean_eq_iff) + apply (auto intro: order_antisym) + done + } moreover case True moreover have "c \ {m *\<^sub>R a + c..m *\<^sub>R b + c}" unfolding True by(auto simp add: eucl_le[where 'a='a]) ultimately show ?thesis by auto next case False - { fix y assume "a \ y" "y \ b" "m > 0" - hence "m *\<^sub>R a + c \ m *\<^sub>R y + c" "m *\<^sub>R y + c \ m *\<^sub>R b + c" + { + fix y + assume "a \ y" "y \ b" "m > 0" + then have "m *\<^sub>R a + c \ m *\<^sub>R y + c" and "m *\<^sub>R y + c \ m *\<^sub>R b + c" unfolding eucl_le[where 'a='a] by (auto simp: inner_simps) - } moreover - { fix y assume "a \ y" "y \ b" "m < 0" - hence "m *\<^sub>R b + c \ m *\<^sub>R y + c" "m *\<^sub>R y + c \ m *\<^sub>R a + c" - unfolding eucl_le[where 'a='a] by(auto simp add: mult_left_mono_neg inner_simps) - } moreover - { fix y assume "m > 0" "m *\<^sub>R a + c \ y" "y \ m *\<^sub>R b + c" - hence "y \ (\x. m *\<^sub>R x + c) ` {a..b}" + } + moreover + { + fix y + assume "a \ y" "y \ b" "m < 0" + then have "m *\<^sub>R b + c \ m *\<^sub>R y + c" and "m *\<^sub>R y + c \ m *\<^sub>R a + c" + unfolding eucl_le[where 'a='a] by (auto simp add: mult_left_mono_neg inner_simps) + } + moreover + { + fix y + assume "m > 0" and "m *\<^sub>R a + c \ y" and "y \ m *\<^sub>R b + c" + then have "y \ (\x. m *\<^sub>R x + c) ` {a..b}" unfolding image_iff Bex_def mem_interval eucl_le[where 'a='a] apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"]) - by(auto simp add: pos_le_divide_eq pos_divide_le_eq mult_commute diff_le_iff inner_simps) - } moreover - { fix y assume "m *\<^sub>R b + c \ y" "y \ m *\<^sub>R a + c" "m < 0" - hence "y \ (\x. m *\<^sub>R x + c) ` {a..b}" + apply (auto simp add: pos_le_divide_eq pos_divide_le_eq mult_commute diff_le_iff inner_simps) + done + } + moreover + { + fix y + assume "m *\<^sub>R b + c \ y" "y \ m *\<^sub>R a + c" "m < 0" + then have "y \ (\x. m *\<^sub>R x + c) ` {a..b}" unfolding image_iff Bex_def mem_interval eucl_le[where 'a='a] apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"]) - by(auto simp add: neg_le_divide_eq neg_divide_le_eq mult_commute diff_le_iff inner_simps) + apply (auto simp add: neg_le_divide_eq neg_divide_le_eq mult_commute diff_le_iff inner_simps) + done } ultimately show ?thesis using False by auto qed @@ -6502,40 +7438,44 @@ subsection {* Banach fixed point theorem (not really topological...) *} lemma banach_fix: - assumes s:"complete s" "s \ {}" and c:"0 \ c" "c < 1" and f:"(f ` s) \ s" and - lipschitz:"\x\s. \y\s. dist (f x) (f y) \ c * dist x y" + assumes s: "complete s" "s \ {}" + and c: "0 \ c" "c < 1" + and f: "(f ` s) \ s" + and lipschitz:"\x\s. \y\s. dist (f x) (f y) \ c * dist x y" shows "\! x\s. (f x = x)" -proof- +proof - have "1 - c > 0" using c by auto from s(2) obtain z0 where "z0 \ s" by auto def z \ "\n. (f ^^ n) z0" - { fix n::nat + { + fix n :: nat have "z n \ s" unfolding z_def proof (induct n) case 0 - thus ?case using `z0 \s` by auto + then show ?case using `z0 \ s` by auto next case Suc - thus ?case using f by auto qed + then show ?case using f by auto qed } note z_in_s = this def d \ "dist (z 0) (z 1)" have fzn:"\n. f (z n) = z (Suc n)" unfolding z_def by auto { - fix n::nat + fix n :: nat have "dist (z n) (z (Suc n)) \ (c ^ n) * d" proof (induct n) - case 0 thus ?case + case 0 + then show ?case unfolding d_def by auto next case (Suc m) - hence "c * dist (z m) (z (Suc m)) \ c ^ Suc m * d" + then have "c * dist (z m) (z (Suc m)) \ c ^ Suc m * d" using `0 \ c` using mult_left_mono[of "dist (z m) (z (Suc m))" "c ^ m * d" c] by auto - thus ?case + then show ?case using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s] unfolding fzn and mult_le_cancel_left by auto @@ -6543,10 +7483,11 @@ } note cf_z = this { - fix n m::nat + fix n m :: nat have "(1 - c) * dist (z m) (z (m+n)) \ (c ^ m) * d * (1 - c ^ n)" proof (induct n) - case 0 show ?case by auto + case 0 + show ?case by auto next case (Suc k) have "(1 - c) * dist (z m) (z (m + Suc k)) \ @@ -6564,21 +7505,21 @@ qed } note cf_z2 = this { - fix e::real - assume "e>0" - hence "\N. \m n. N \ m \ N \ n \ dist (z m) (z n) < e" + fix e :: real + assume "e > 0" + then have "\N. \m n. N \ m \ N \ n \ dist (z m) (z n) < e" proof (cases "d = 0") case True have *: "\x. ((1 - c) * x \ 0) = (x \ 0)" using `1 - c > 0` by (metis mult_zero_left mult_commute real_mult_le_cancel_iff1) from True have "\n. z n = z0" using cf_z2[of 0] and c unfolding z_def by (simp add: *) - thus ?thesis using `e>0` by auto + then show ?thesis using `e>0` by auto next case False - hence "d>0" unfolding d_def using zero_le_dist[of "z 0" "z 1"] + then have "d>0" unfolding d_def using zero_le_dist[of "z 0" "z 1"] by (metis False d_def less_le) - hence "0 < e * (1 - c) / d" + then have "0 < e * (1 - c) / d" using `e>0` and `1-c>0` using divide_pos_pos[of "e * (1 - c)" d] and mult_pos_pos[of e "1 - c"] by auto @@ -6591,7 +7532,7 @@ using power_decreasing[OF `n\N`, of c] by auto have "1 - c ^ (m - n) > 0" using c and power_strict_mono[of c 1 "m - n"] using `m>n` by auto - hence **:"d * (1 - c ^ (m - n)) / (1 - c) > 0" + then have **: "d * (1 - c ^ (m - n)) / (1 - c) > 0" using mult_pos_pos[OF `d>0`, of "1 - c ^ (m - n)"] using divide_pos_pos[of "d * (1 - c ^ (m - n))" "1 - c"] using `0 < 1 - c` @@ -6606,27 +7547,30 @@ unfolding mult_assoc by auto also have "\ < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)" using mult_strict_right_mono[OF N **] unfolding mult_assoc by auto - also have "\ = e * (1 - c ^ (m - n))" using c and `d>0` and `1 - c > 0` by auto - also have "\ \ e" using c and `1 - c ^ (m - n) > 0` and `e>0` using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto + also have "\ = e * (1 - c ^ (m - n))" + using c and `d>0` and `1 - c > 0` by auto + also have "\ \ e" using c and `1 - c ^ (m - n) > 0` and `e>0` + using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto finally have "dist (z m) (z n) < e" by auto } note * = this { - fix m n::nat - assume as:"N\m" "N\n" - hence "dist (z n) (z m) < e" + fix m n :: nat + assume as: "N \ m" "N \ n" + then have "dist (z n) (z m) < e" proof (cases "n = m") case True - thus ?thesis using `e>0` by auto + then show ?thesis using `e>0` by auto next case False - thus ?thesis using as and *[of n m] *[of m n] + then show ?thesis using as and *[of n m] *[of m n] unfolding nat_neq_iff by (auto simp add: dist_commute) qed } - thus ?thesis by auto + then show ?thesis by auto qed } - hence "Cauchy z" unfolding cauchy_def by auto + then have "Cauchy z" + unfolding cauchy_def by auto then obtain x where "x\s" and x:"(z ---> x) sequentially" using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto @@ -6634,13 +7578,14 @@ have "e = 0" proof (rule ccontr) assume "e \ 0" - hence "e>0" unfolding e_def using zero_le_dist[of "f x" x] + then have "e > 0" + unfolding e_def using zero_le_dist[of "f x" x] by (metis dist_eq_0_iff dist_nz e_def) then obtain N where N:"\n\N. dist (z n) x < e / 2" using x[unfolded LIMSEQ_def, THEN spec[where x="e/2"]] by auto - hence N':"dist (z N) x < e / 2" by auto - - have *:"c * dist (z N) x \ dist (z N) x" + then have N':"dist (z N) x < e / 2" by auto + + have *: "c * dist (z N) x \ dist (z N) x" unfolding mult_le_cancel_right2 using zero_le_dist[of "z N" x] and c by (metis dist_eq_0_iff dist_nz order_less_asym less_le) @@ -6657,24 +7602,25 @@ unfolding e_def by auto qed - hence "f x = x" unfolding e_def by auto + then have "f x = x" unfolding e_def by auto moreover { fix y assume "f y = y" "y\s" - hence "dist x y \ c * dist x y" + then have "dist x y \ c * dist x y" using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]] using `x\s` and `f x = x` by auto - hence "dist x y = 0" + then have "dist x y = 0" unfolding mult_le_cancel_right1 using c and zero_le_dist[of x y] by auto - hence "y = x" by auto + then have "y = x" by auto } ultimately show ?thesis using `x\s` by blast+ qed + subsection {* Edelstein fixed point theorem *} lemma edelstein_fix: