# HG changeset patch # User paulson # Date 928832342 -7200 # Node ID 9e0037839d63c559d2dee116444aac8b2277447a # Parent 9ee166138311597fbc80e85c08c148a59f68b76f renamed the underlying relation of leadsTo from "leadsto" to "leads" to reduce the risk of confusion diff -r 9ee166138311 -r 9e0037839d63 src/HOL/UNITY/WFair.ML --- a/src/HOL/UNITY/WFair.ML Tue Jun 08 10:30:04 1999 +0200 +++ b/src/HOL/UNITY/WFair.ML Tue Jun 08 10:59:02 1999 +0200 @@ -75,12 +75,12 @@ (*** leadsTo ***) Goalw [leadsTo_def] "F : A ensures B ==> F : A leadsTo B"; -by (blast_tac (claset() addIs [leadsto.Basis]) 1); +by (blast_tac (claset() addIs [leads.Basis]) 1); qed "leadsTo_Basis"; Goalw [leadsTo_def] "[| F : A leadsTo B; F : B leadsTo C |] ==> F : A leadsTo C"; -by (blast_tac (claset() addIs [leadsto.Trans]) 1); +by (blast_tac (claset() addIs [leads.Trans]) 1); qed "leadsTo_Trans"; Goal "F : transient A ==> F : A leadsTo (-A)"; @@ -105,14 +105,14 @@ (*The Union introduction rule as we should have liked to state it*) val prems = Goalw [leadsTo_def] "(!!A. A : S ==> F : A leadsTo B) ==> F : (Union S) leadsTo B"; -by (blast_tac (claset() addIs [leadsto.Union] addDs prems) 1); +by (blast_tac (claset() addIs [leads.Union] addDs prems) 1); qed "leadsTo_Union"; val prems = Goalw [leadsTo_def] "(!!A. A : S ==> F : (A Int C) leadsTo B) \ \ ==> F : (Union S Int C) leadsTo B"; by (simp_tac (HOL_ss addsimps [Int_Union_Union]) 1); -by (blast_tac (claset() addIs [leadsto.Union] addDs prems) 1); +by (blast_tac (claset() addIs [leads.Union] addDs prems) 1); qed "leadsTo_Union_Int"; val prems = Goal @@ -142,7 +142,7 @@ \ ==> P A C; \ \ !!B S. ALL A:S. F : A leadsTo B & P A B ==> P (Union S) B \ \ |] ==> P za zb"; -by (rtac (major RS CollectD RS leadsto.induct) 1); +by (rtac (major RS CollectD RS leads.induct) 1); by (REPEAT (blast_tac (claset() addIs prems) 1)); qed "leadsTo_induct"; diff -r 9ee166138311 -r 9e0037839d63 src/HOL/UNITY/WFair.thy --- a/src/HOL/UNITY/WFair.thy Tue Jun 08 10:30:04 1999 +0200 +++ b/src/HOL/UNITY/WFair.thy Tue Jun 08 10:59:02 1999 +0200 @@ -23,24 +23,23 @@ ensures :: "['a set, 'a set] => 'a program set" (infixl 60) (*LEADS-TO constant for the inductive definition*) - leadsto :: "'a program => ('a set * 'a set) set" + leads :: "'a program => ('a set * 'a set) set" (*visible version of the LEADS-TO relation*) leadsTo :: "['a set, 'a set] => 'a program set" (infixl 60) - -inductive "leadsto F" + +inductive "leads F" intrs - Basis "F : A ensures B ==> (A,B) : leadsto F" + Basis "F : A ensures B ==> (A,B) : leads F" - Trans "[| (A,B) : leadsto F; (B,C) : leadsto F |] - ==> (A,C) : leadsto F" + Trans "[| (A,B) : leads F; (B,C) : leads F |] ==> (A,C) : leads F" (*Encoding using powerset of the desired axiom - (!!A. A : S ==> (A,B) : leadsto F) ==> (Union S, B) : leadsto F + (!!A. A : S ==> (A,B) : leads F) ==> (Union S, B) : leads F *) - Union "(UN A:S. {(A,B)}) : Pow (leadsto F) ==> (Union S, B) : leadsto F" + Union "(UN A:S. {(A,B)}) : Pow (leads F) ==> (Union S, B) : leads F" monos Pow_mono @@ -49,7 +48,7 @@ defs ensures_def "A ensures B == (A-B co A Un B) Int transient (A-B)" - leadsTo_def "A leadsTo B == {F. (A,B) : leadsto F}" + leadsTo_def "A leadsTo B == {F. (A,B) : leads F}" constdefs