# HG changeset patch # User haftmann # Date 1312824618 -7200 # Node ID 9f8790f8e589d108da50cbf7cebee4fd531b8208 # Parent 81e55342cb86251b7b9bbe1919cd7637fce8c69c dropped lemmas (Inf|Sup)_(singleton|binary) diff -r 81e55342cb86 -r 9f8790f8e589 src/HOL/Complete_Lattice.thy --- a/src/HOL/Complete_Lattice.thy Mon Aug 08 19:21:11 2011 +0200 +++ b/src/HOL/Complete_Lattice.thy Mon Aug 08 19:30:18 2011 +0200 @@ -284,7 +284,7 @@ proof assume "\x\A. x = \" then have "A = {} \ A = {\}" by auto - then show "\A = \" by auto + then show "\A = \" by (auto simp add: Inf_insert) next assume "\A = \" show "\x\A. x = \" @@ -1190,19 +1190,19 @@ text {* Legacy names *} -lemma Inf_singleton [simp]: +lemma (in complete_lattice) Inf_singleton [simp]: "\{a} = a" - by (auto intro: antisym Inf_lower Inf_greatest) + by (simp add: Inf_insert) -lemma Sup_singleton [simp]: +lemma (in complete_lattice) Sup_singleton [simp]: "\{a} = a" - by (auto intro: antisym Sup_upper Sup_least) + by (simp add: Sup_insert) -lemma Inf_binary: +lemma (in complete_lattice) Inf_binary: "\{a, b} = a \ b" by (simp add: Inf_insert) -lemma Sup_binary: +lemma (in complete_lattice) Sup_binary: "\{a, b} = a \ b" by (simp add: Sup_insert)