# HG changeset patch # User paulson # Date 1111764057 -3600 # Node ID 9f912f8fd2df1986cfea383949add2e3b6316008 # Parent 7a108ae4c7981aac227567006171f9b4b4e9155a tidied up diff -r 7a108ae4c798 -r 9f912f8fd2df src/HOL/Library/Primes.thy --- a/src/HOL/Library/Primes.thy Fri Mar 25 14:14:01 2005 +0100 +++ b/src/HOL/Library/Primes.thy Fri Mar 25 16:20:57 2005 +0100 @@ -210,11 +210,13 @@ done lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)" - apply (rule gcd_commute [THEN trans]) - apply (subst add_commute) - apply (simp add: gcd_add1) - apply (rule gcd_commute) - done +proof - + have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) + also have "... = gcd (n + m, m)" by (simp add: add_commute) + also have "... = gcd (n, m)" by simp + also have "... = gcd (m, n)" by (rule gcd_commute) + finally show ?thesis . +qed lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)" apply (subst add_commute) @@ -223,7 +225,7 @@ lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)" apply (induct k) - apply (simp_all add: gcd_add2 add_assoc) + apply (simp_all add: add_assoc) done @@ -235,8 +237,8 @@ apply (rule_tac n = k in relprime_dvd_mult) apply (simp add: gcd_assoc) apply (simp add: gcd_commute) - apply (simp_all add: mult_commute gcd_dvd1 gcd_dvd2) - apply (blast intro: gcd_dvd1 dvd_trans) + apply (simp_all add: mult_commute) + apply (blast intro: dvd_trans) done end diff -r 7a108ae4c798 -r 9f912f8fd2df src/HOL/NumberTheory/Fib.thy --- a/src/HOL/NumberTheory/Fib.thy Fri Mar 25 14:14:01 2005 +0100 +++ b/src/HOL/NumberTheory/Fib.thy Fri Mar 25 16:20:57 2005 +0100 @@ -1,5 +1,4 @@ -(* Title: HOL/NumberTheory/Fib.thy - ID: $Id$ +(* ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) @@ -17,10 +16,10 @@ *} consts fib :: "nat => nat" -recdef fib less_than - zero: "fib 0 = 0" - one: "fib (Suc 0) = Suc 0" - Suc_Suc: "fib (Suc (Suc x)) = fib x + fib (Suc x)" +recdef fib "measure (\x. x)" + zero: "fib 0 = 0" + one: "fib (Suc 0) = Suc 0" + Suc_Suc: "fib (Suc (Suc x)) = fib x + fib (Suc x)" text {* \medskip The difficulty in these proofs is to ensure that the @@ -29,11 +28,12 @@ to the Simplifier and are applied very selectively at first. *} +text{*We disable @{text fib.Suc_Suc} for simplification ...*} declare fib.Suc_Suc [simp del] +text{*...then prove a version that has a more restrictive pattern.*} lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))" - apply (rule fib.Suc_Suc) - done + by (rule fib.Suc_Suc) text {* \medskip Concrete Mathematics, page 280 *} @@ -42,45 +42,53 @@ apply (induct n rule: fib.induct) prefer 3 txt {* simplify the LHS just enough to apply the induction hypotheses *} - apply (simp add: fib.Suc_Suc [of "Suc (m + n)", standard]) - apply (simp_all (no_asm_simp) add: fib.Suc_Suc add_mult_distrib add_mult_distrib2) + apply (simp add: fib_Suc3) + apply (simp_all add: fib.Suc_Suc add_mult_distrib2) done -lemma fib_Suc_neq_0 [simp]: "fib (Suc n) \ 0" +lemma fib_Suc_neq_0: "fib (Suc n) \ 0" apply (induct n rule: fib.induct) apply (simp_all add: fib.Suc_Suc) done -lemma [simp]: "0 < fib (Suc n)" - apply (simp add: neq0_conv [symmetric]) - done +lemma fib_Suc_gr_0: "0 < fib (Suc n)" + by (insert fib_Suc_neq_0 [of n], simp) lemma fib_gr_0: "0 < n ==> 0 < fib n" - apply (rule not0_implies_Suc [THEN exE]) - apply auto - done + by (case_tac n, auto simp add: fib_Suc_gr_0) text {* - \medskip Concrete Mathematics, page 278: Cassini's identity. It is - much easier to prove using integers! + \medskip Concrete Mathematics, page 278: Cassini's identity. The proof is + much easier using integers, not natural numbers! *} -lemma fib_Cassini: +lemma fib_Cassini_int: "int (fib (Suc (Suc n)) * fib n) = (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1 else int (fib (Suc n) * fib (Suc n)) + 1)" apply (induct n rule: fib.induct) apply (simp add: fib.Suc_Suc) apply (simp add: fib.Suc_Suc mod_Suc) - apply (simp add: fib.Suc_Suc - add_mult_distrib add_mult_distrib2 mod_Suc zmult_int [symmetric] zmult_ac) - apply (subgoal_tac "x mod 2 < 2", arith) - apply simp + apply (simp add: fib.Suc_Suc add_mult_distrib add_mult_distrib2 + mod_Suc zmult_int [symmetric]) + apply presburger + done + +text{*We now obtain a version for the natural numbers via the coercion + function @{term int}.*} +theorem fib_Cassini: + "fib (Suc (Suc n)) * fib n = + (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1 + else fib (Suc n) * fib (Suc n) + 1)" + apply (rule int_int_eq [THEN iffD1]) + apply (simp add: fib_Cassini_int) + apply (subst zdiff_int [symmetric]) + apply (insert fib_Suc_gr_0 [of n], simp_all) done -text {* \medskip Towards Law 6.111 of Concrete Mathematics *} +text {* \medskip Toward Law 6.111 of Concrete Mathematics *} lemma gcd_fib_Suc_eq_1: "gcd (fib n, fib (Suc n)) = Suc 0" apply (induct n rule: fib.induct) @@ -90,35 +98,29 @@ done lemma gcd_fib_add: "gcd (fib m, fib (n + m)) = gcd (fib m, fib n)" - apply (simp (no_asm) add: gcd_commute [of "fib m"]) - apply (case_tac "m = 0") - apply simp - apply (clarify dest!: not0_implies_Suc) + apply (simp add: gcd_commute [of "fib m"]) + apply (case_tac m) + apply simp apply (simp add: fib_add) - apply (simp add: add_commute gcd_non_0) - apply (simp add: gcd_non_0 [symmetric]) + apply (simp add: add_commute gcd_non_0 [OF fib_Suc_gr_0]) + apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric]) apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel) done lemma gcd_fib_diff: "m \ n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)" - apply (rule gcd_fib_add [symmetric, THEN trans]) - apply simp - done + by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) lemma gcd_fib_mod: "0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)" apply (induct n rule: nat_less_induct) - apply (subst mod_if) - apply (simp add: gcd_fib_diff mod_geq not_less_iff_le) + apply (simp add: mod_if gcd_fib_diff mod_geq) done lemma fib_gcd: "fib (gcd (m, n)) = gcd (fib m, fib n)" -- {* Law 6.111 *} apply (induct m n rule: gcd_induct) - apply simp - apply (simp add: gcd_non_0) - apply (simp add: gcd_commute gcd_fib_mod) + apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod) done -lemma fib_mult_eq_setsum: +theorem fib_mult_eq_setsum: "fib (Suc n) * fib n = (\k \ {..n}. fib k * fib k)" apply (induct n rule: fib.induct) apply (auto simp add: atMost_Suc fib.Suc_Suc)