# HG changeset patch # User nipkow # Date 1513803155 -3600 # Node ID a00f5a71e672688a26c9024125462862025c3a19 # Parent 754952c12293f4e439853e0cf283aa4fe115fc1d tuned op's diff -r 754952c12293 -r a00f5a71e672 src/HOL/Library/positivstellensatz.ML --- a/src/HOL/Library/positivstellensatz.ML Wed Dec 20 21:06:08 2017 +0100 +++ b/src/HOL/Library/positivstellensatz.ML Wed Dec 20 21:52:35 2017 +0100 @@ -370,8 +370,8 @@ fun eqT_elim th = Thm.equal_elim (Thm.symmetric th) @{thm TrueI} fun oprconv cv ct = let val g = Thm.dest_fun2 ct - in if g aconvc @{cterm "op <= :: real => _"} - orelse g aconvc @{cterm "op < :: real => _"} + in if g aconvc @{cterm "(op <=) :: real => _"} + orelse g aconvc @{cterm "(op <) :: real => _"} then arg_conv cv ct else arg1_conv cv ct end @@ -406,13 +406,13 @@ | Axiom_le n => nth les n | Axiom_lt n => nth lts n | Rational_eq x => eqT_elim(numeric_eq_conv(Thm.apply @{cterm Trueprop} - (Thm.apply (Thm.apply @{cterm "op =::real => _"} (mk_numeric x)) + (Thm.apply (Thm.apply @{cterm "(op =)::real => _"} (mk_numeric x)) @{cterm "0::real"}))) | Rational_le x => eqT_elim(numeric_ge_conv(Thm.apply @{cterm Trueprop} - (Thm.apply (Thm.apply @{cterm "op <=::real => _"} + (Thm.apply (Thm.apply @{cterm "(op <=)::real => _"} @{cterm "0::real"}) (mk_numeric x)))) | Rational_lt x => eqT_elim(numeric_gt_conv(Thm.apply @{cterm Trueprop} - (Thm.apply (Thm.apply @{cterm "op <::real => _"} @{cterm "0::real"}) + (Thm.apply (Thm.apply @{cterm "(op <)::real => _"} @{cterm "0::real"}) (mk_numeric x)))) | Square pt => square_rule (cterm_of_poly pt) | Eqmul(pt,p) => emul_rule (cterm_of_poly pt) (translate p) @@ -428,9 +428,9 @@ val concl = Thm.dest_arg o Thm.cprop_of fun is_binop opr ct = (Thm.dest_fun2 ct aconvc opr handle CTERM _ => false) - val is_req = is_binop @{cterm "op =:: real => _"} - val is_ge = is_binop @{cterm "op <=:: real => _"} - val is_gt = is_binop @{cterm "op <:: real => _"} + val is_req = is_binop @{cterm "(op =):: real => _"} + val is_ge = is_binop @{cterm "(op <=):: real => _"} + val is_gt = is_binop @{cterm "(op <):: real => _"} val is_conj = is_binop @{cterm HOL.conj} val is_disj = is_binop @{cterm HOL.disj} fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) @@ -476,7 +476,7 @@ fun dest_binary b ct = if is_binop b ct then Thm.dest_binop ct else raise CTERM ("dest_binary",[b,ct]) - val dest_eq = dest_binary @{cterm "op = :: real => _"} + val dest_eq = dest_binary @{cterm "(op =) :: real => _"} val neq_th = nth pth 5 fun real_not_eq_conv ct = let @@ -486,8 +486,8 @@ val th_x = Drule.arg_cong_rule @{cterm "uminus :: real => _"} th_p val th_n = fconv_rule (arg_conv poly_neg_conv) th_x val th' = Drule.binop_cong_rule @{cterm HOL.disj} - (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_p) - (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_n) + (Drule.arg_cong_rule (Thm.apply @{cterm "(op <)::real=>_"} @{cterm "0::real"}) th_p) + (Drule.arg_cong_rule (Thm.apply @{cterm "(op <)::real=>_"} @{cterm "0::real"}) th_n) in Thm.transitive th th' end fun equal_implies_1_rule PQ =