# HG changeset patch # User wenzelm # Date 1322167318 -3600 # Node ID a0336f8b65587da4d5a5e8fd0c75937fb558f6a9 # Parent b4f374a45668e6b6acea27f95d4c24bd259e8888 speed-up proof; diff -r b4f374a45668 -r a0336f8b6558 src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy --- a/src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy Thu Nov 24 21:15:20 2011 +0100 +++ b/src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy Thu Nov 24 21:41:58 2011 +0100 @@ -114,8 +114,8 @@ (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))" proof - assume "a \ zOdd" - from QRLemma4 [OF this] have - "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \ zEven)" .. + from QRLemma4 [OF this, symmetric] have + "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \ zEven)" . moreover have "0 \ int(card E)" by auto moreover have "0 \ setsum (%x. ((x * a) div p)) A"