# HG changeset patch # User paulson # Date 1677079456 0 # Node ID a03bb622517c15f0b027dce1ec4cde841502f7fa # Parent 505958b16880944a6613636ecfcf910144f88d27 One new (necessary) theorem diff -r 505958b16880 -r a03bb622517c src/HOL/Int.thy --- a/src/HOL/Int.thy Tue Feb 21 16:47:03 2023 +0000 +++ b/src/HOL/Int.thy Wed Feb 22 15:24:16 2023 +0000 @@ -1754,6 +1754,9 @@ lemma power_int_minus: "power_int (x::'a) (-n) = inverse (power_int x n)" by (auto simp: power_int_def power_inverse) +lemma power_int_minus_divide: "power_int (x::'a) (-n) = 1 / (power_int x n)" + by (simp add: divide_inverse power_int_minus) + lemma power_int_eq_0_iff [simp]: "power_int (x::'a) n = 0 \ x = 0 \ n \ 0" by (auto simp: power_int_def)