# HG changeset patch # User haftmann # Date 1265634418 -3600 # Node ID a1d93ce94235457a62cd2954c8070133e021a299 # Parent 748f0bc3f7caa071f55cb148ea8d55e7fe8be168 more precise proofs diff -r 748f0bc3f7ca -r a1d93ce94235 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Mon Feb 08 14:06:54 2010 +0100 +++ b/src/HOL/Transcendental.thy Mon Feb 08 14:06:58 2010 +0100 @@ -2904,10 +2904,12 @@ next case False hence "0 < \x\" and "- \x\ < \x\" by auto have "suminf (?c (-\x\)) - arctan (-\x\) = suminf (?c 0) - arctan 0" - by (rule suminf_eq_arctan_bounded[where x="0" and a="-\x\" and b="\x\", symmetric], auto simp add: `\x\ < r` `-\x\ < \x\`) + by (rule suminf_eq_arctan_bounded[where x="0" and a="-\x\" and b="\x\", symmetric]) + (simp_all only: `\x\ < r` `-\x\ < \x\` neg_less_iff_less) moreover have "suminf (?c x) - arctan x = suminf (?c (-\x\)) - arctan (-\x\)" - by (rule suminf_eq_arctan_bounded[where x="x" and a="-\x\" and b="\x\"], auto simp add: `\x\ < r` `-\x\ < \x\`) + by (rule suminf_eq_arctan_bounded[where x="x" and a="-\x\" and b="\x\"]) + (simp_all only: `\x\ < r` `-\x\ < \x\` neg_less_iff_less) ultimately show ?thesis using suminf_arctan_zero by auto qed