# HG changeset patch # User chaieb # Date 1093869618 -7200 # Node ID a1e84e86c583e98969dfe8209bfffa1841d283e6 # Parent 5d7c96e0f9dcde3f135a836c4f5537f94fbd3e80 corrected diff -r 5d7c96e0f9dc -r a1e84e86c583 src/HOL/Integ/cooper_proof.ML --- a/src/HOL/Integ/cooper_proof.ML Mon Aug 30 12:01:52 2004 +0200 +++ b/src/HOL/Integ/cooper_proof.ML Mon Aug 30 14:40:18 2004 +0200 @@ -24,12 +24,6 @@ val proof_of_adjustcoeffeq : Sign.sg -> term -> int -> term -> thm val prove_elementar : Sign.sg -> string -> term -> thm val thm_of : Sign.sg -> (term -> (term list * (thm list -> thm))) -> term -> thm - val timef : (unit->thm) -> thm - val prtime : unit -> unit - val time_reset : unit -> unit - val timef2 : (unit->thm) -> thm - val prtime2 : unit -> unit - val time_reset2 : unit -> unit end; structure CooperProof : COOPER_PROOF = @@ -879,8 +873,8 @@ (* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*) (* ------------------------------------------------------------------------- *) -val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer(); -val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer(); +(* val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer();*) +(* val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer(); *) fun cooper_prv sg (x as Free(xn,xT)) efm = let (* lfm_thm : efm = linearized form of efm*) @@ -913,16 +907,19 @@ val dlcm = mk_numeral (divlcm x cfm) (* Which set is smaller to generate the (hoepfully) shorter proof*) val cms = if ((length A) < (length B )) then "pi" else "mi" - val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity" +(* val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity"*) (* synthesize the proof of cooper's theorem*) (* cp_thm: EX x. cfm = Q*) - val cp_thm = timef ( fn () => cooper_thm sg cms x cfm dlcm A B) + val cp_thm = cooper_thm sg cms x cfm dlcm A B (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*) (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*) +(* val _ = prth cp_thm val _ = writeln "Expanding the bounded EX..." - val exp_cp_thm = timef2 (fn () => refl RS (simplify ss (cp_thm RSN (2,trans)))) - val _ = writeln "Expanded" +*) + val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans))) +(* + val _ = writeln "Expanded" *) (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*) val (lsuth,rsuth) = qe_get_terms (uth) (* lseacth = EX x. efm; rseacth = EX x. fm*) diff -r 5d7c96e0f9dc -r a1e84e86c583 src/HOL/Tools/Presburger/cooper_proof.ML --- a/src/HOL/Tools/Presburger/cooper_proof.ML Mon Aug 30 12:01:52 2004 +0200 +++ b/src/HOL/Tools/Presburger/cooper_proof.ML Mon Aug 30 14:40:18 2004 +0200 @@ -24,12 +24,6 @@ val proof_of_adjustcoeffeq : Sign.sg -> term -> int -> term -> thm val prove_elementar : Sign.sg -> string -> term -> thm val thm_of : Sign.sg -> (term -> (term list * (thm list -> thm))) -> term -> thm - val timef : (unit->thm) -> thm - val prtime : unit -> unit - val time_reset : unit -> unit - val timef2 : (unit->thm) -> thm - val prtime2 : unit -> unit - val time_reset2 : unit -> unit end; structure CooperProof : COOPER_PROOF = @@ -879,8 +873,8 @@ (* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*) (* ------------------------------------------------------------------------- *) -val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer(); -val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer(); +(* val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer();*) +(* val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer(); *) fun cooper_prv sg (x as Free(xn,xT)) efm = let (* lfm_thm : efm = linearized form of efm*) @@ -913,16 +907,19 @@ val dlcm = mk_numeral (divlcm x cfm) (* Which set is smaller to generate the (hoepfully) shorter proof*) val cms = if ((length A) < (length B )) then "pi" else "mi" - val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity" +(* val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity"*) (* synthesize the proof of cooper's theorem*) (* cp_thm: EX x. cfm = Q*) - val cp_thm = timef ( fn () => cooper_thm sg cms x cfm dlcm A B) + val cp_thm = cooper_thm sg cms x cfm dlcm A B (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*) (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*) +(* val _ = prth cp_thm val _ = writeln "Expanding the bounded EX..." - val exp_cp_thm = timef2 (fn () => refl RS (simplify ss (cp_thm RSN (2,trans)))) - val _ = writeln "Expanded" +*) + val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans))) +(* + val _ = writeln "Expanded" *) (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*) val (lsuth,rsuth) = qe_get_terms (uth) (* lseacth = EX x. efm; rseacth = EX x. fm*)