# HG changeset patch # User nipkow # Date 1575045780 -3600 # Node ID a1e94be66bd6c16a86fc9602522e73b2f9ef0e63 # Parent 7fac205dd73725f01081c1dbc6c323c584064cf1 reduced imports; deleted unusewd minor lemmas for that purpose diff -r 7fac205dd737 -r a1e94be66bd6 src/HOL/Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Fri Nov 29 15:06:04 2019 +0100 +++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Fri Nov 29 17:43:00 2019 +0100 @@ -5,7 +5,7 @@ section \Finite Cartesian Products of Euclidean Spaces\ theory Cartesian_Euclidean_Space -imports Convex_Euclidean_Space Derivative +imports Derivative begin lemma subspace_special_hyperplane: "subspace {x. x $ k = 0}" @@ -450,6 +450,7 @@ shows "convex {x. \i. P i (x$i)}" using assms unfolding convex_def by auto +(* Unused lemma convex_positive_orthant_cart: "convex {x::real^'n. (\i. 0 \ x$i)}" by (rule convex_box_cart) (simp add: atLeast_def[symmetric]) @@ -464,12 +465,12 @@ where "finite s" "cbox (x - (\ i. d)) (x + (\ i. d)) = convex hull s" proof - from assms obtain s where "finite s" - and "cbox (x - sum ((*\<^sub>R) d) Basis) (x + sum ((*\<^sub>R) d) Basis) = convex hull s" + and "cbox (x - sum (( *\<^sub>R) d) Basis) (x + sum (( *\<^sub>R) d) Basis) = convex hull s" by (rule cube_convex_hull) with that[of s] show thesis by (simp add: const_vector_cart) qed - +*) subsection "Derivative"