# HG changeset patch # User huffman # Date 1235145731 28800 # Node ID a2f19e0a28b25c63524f52b5a753ac9e166ab969 # Parent 690c65b8ad1a9992efc1375fb7db3766e06c8551 add theory of products as real vector spaces to Library diff -r 690c65b8ad1a -r a2f19e0a28b2 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Fri Feb 20 07:41:41 2009 -0800 +++ b/src/HOL/IsaMakefile Fri Feb 20 08:02:11 2009 -0800 @@ -340,6 +340,7 @@ Library/Poly_Deriv.thy \ Library/Polynomial.thy \ Library/Product_plus.thy \ + Library/Product_Vector.thy \ Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML $(SRC)/HOL/Tools/float_arith.ML \ Library/reify_data.ML Library/reflection.ML @cd Library; $(ISABELLE_TOOL) usedir $(OUT)/HOL Library diff -r 690c65b8ad1a -r a2f19e0a28b2 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Fri Feb 20 07:41:41 2009 -0800 +++ b/src/HOL/Library/Library.thy Fri Feb 20 08:02:11 2009 -0800 @@ -41,7 +41,7 @@ Poly_Deriv Polynomial Primes - Product_plus + Product_Vector Quickcheck Quicksort Quotient diff -r 690c65b8ad1a -r a2f19e0a28b2 src/HOL/Library/Product_Vector.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Product_Vector.thy Fri Feb 20 08:02:11 2009 -0800 @@ -0,0 +1,273 @@ +(* Title: HOL/Library/Product_Vector.thy + Author: Brian Huffman +*) + +header {* Cartesian Products as Vector Spaces *} + +theory Product_Vector +imports Inner_Product Product_plus +begin + +subsection {* Product is a real vector space *} + +instantiation "*" :: (real_vector, real_vector) real_vector +begin + +definition scaleR_prod_def: + "scaleR r A = (scaleR r (fst A), scaleR r (snd A))" + +lemma fst_scaleR [simp]: "fst (scaleR r A) = scaleR r (fst A)" + unfolding scaleR_prod_def by simp + +lemma snd_scaleR [simp]: "snd (scaleR r A) = scaleR r (snd A)" + unfolding scaleR_prod_def by simp + +lemma scaleR_Pair [simp]: "scaleR r (a, b) = (scaleR r a, scaleR r b)" + unfolding scaleR_prod_def by simp + +instance proof + fix a b :: real and x y :: "'a \ 'b" + show "scaleR a (x + y) = scaleR a x + scaleR a y" + by (simp add: expand_prod_eq scaleR_right_distrib) + show "scaleR (a + b) x = scaleR a x + scaleR b x" + by (simp add: expand_prod_eq scaleR_left_distrib) + show "scaleR a (scaleR b x) = scaleR (a * b) x" + by (simp add: expand_prod_eq) + show "scaleR 1 x = x" + by (simp add: expand_prod_eq) +qed + +end + +subsection {* Product is a normed vector space *} + +instantiation + "*" :: (real_normed_vector, real_normed_vector) real_normed_vector +begin + +definition norm_prod_def: + "norm x = sqrt ((norm (fst x))\ + (norm (snd x))\)" + +definition sgn_prod_def: + "sgn (x::'a \ 'b) = scaleR (inverse (norm x)) x" + +lemma norm_Pair: "norm (a, b) = sqrt ((norm a)\ + (norm b)\)" + unfolding norm_prod_def by simp + +instance proof + fix r :: real and x y :: "'a \ 'b" + show "0 \ norm x" + unfolding norm_prod_def by simp + show "norm x = 0 \ x = 0" + unfolding norm_prod_def + by (simp add: expand_prod_eq) + show "norm (x + y) \ norm x + norm y" + unfolding norm_prod_def + apply (rule order_trans [OF _ real_sqrt_sum_squares_triangle_ineq]) + apply (simp add: add_mono power_mono norm_triangle_ineq) + done + show "norm (scaleR r x) = \r\ * norm x" + unfolding norm_prod_def + apply (simp add: norm_scaleR power_mult_distrib) + apply (simp add: right_distrib [symmetric]) + apply (simp add: real_sqrt_mult_distrib) + done + show "sgn x = scaleR (inverse (norm x)) x" + by (rule sgn_prod_def) +qed + +end + +subsection {* Product is an inner product space *} + +instantiation "*" :: (real_inner, real_inner) real_inner +begin + +definition inner_prod_def: + "inner x y = inner (fst x) (fst y) + inner (snd x) (snd y)" + +lemma inner_Pair [simp]: "inner (a, b) (c, d) = inner a c + inner b d" + unfolding inner_prod_def by simp + +instance proof + fix r :: real + fix x y z :: "'a::real_inner * 'b::real_inner" + show "inner x y = inner y x" + unfolding inner_prod_def + by (simp add: inner_commute) + show "inner (x + y) z = inner x z + inner y z" + unfolding inner_prod_def + by (simp add: inner_left_distrib) + show "inner (scaleR r x) y = r * inner x y" + unfolding inner_prod_def + by (simp add: inner_scaleR_left right_distrib) + show "0 \ inner x x" + unfolding inner_prod_def + by (intro add_nonneg_nonneg inner_ge_zero) + show "inner x x = 0 \ x = 0" + unfolding inner_prod_def expand_prod_eq + by (simp add: add_nonneg_eq_0_iff) + show "norm x = sqrt (inner x x)" + unfolding norm_prod_def inner_prod_def + by (simp add: power2_norm_eq_inner) +qed + +end + +subsection {* Pair operations are linear and continuous *} + +interpretation fst!: bounded_linear fst + apply (unfold_locales) + apply (rule fst_add) + apply (rule fst_scaleR) + apply (rule_tac x="1" in exI, simp add: norm_Pair) + done + +interpretation snd!: bounded_linear snd + apply (unfold_locales) + apply (rule snd_add) + apply (rule snd_scaleR) + apply (rule_tac x="1" in exI, simp add: norm_Pair) + done + +text {* TODO: move to NthRoot *} +lemma sqrt_add_le_add_sqrt: + assumes x: "0 \ x" and y: "0 \ y" + shows "sqrt (x + y) \ sqrt x + sqrt y" +apply (rule power2_le_imp_le) +apply (simp add: real_sum_squared_expand add_nonneg_nonneg x y) +apply (simp add: mult_nonneg_nonneg x y) +apply (simp add: add_nonneg_nonneg x y) +done + +lemma bounded_linear_Pair: + assumes f: "bounded_linear f" + assumes g: "bounded_linear g" + shows "bounded_linear (\x. (f x, g x))" +proof + interpret f: bounded_linear f by fact + interpret g: bounded_linear g by fact + fix x y and r :: real + show "(f (x + y), g (x + y)) = (f x, g x) + (f y, g y)" + by (simp add: f.add g.add) + show "(f (r *\<^sub>R x), g (r *\<^sub>R x)) = r *\<^sub>R (f x, g x)" + by (simp add: f.scaleR g.scaleR) + obtain Kf where "0 < Kf" and norm_f: "\x. norm (f x) \ norm x * Kf" + using f.pos_bounded by fast + obtain Kg where "0 < Kg" and norm_g: "\x. norm (g x) \ norm x * Kg" + using g.pos_bounded by fast + have "\x. norm (f x, g x) \ norm x * (Kf + Kg)" + apply (rule allI) + apply (simp add: norm_Pair) + apply (rule order_trans [OF sqrt_add_le_add_sqrt], simp, simp) + apply (simp add: right_distrib) + apply (rule add_mono [OF norm_f norm_g]) + done + then show "\K. \x. norm (f x, g x) \ norm x * K" .. +qed + +text {* + TODO: The next three proofs are nearly identical to each other. + Is there a good way to factor out the common parts? +*} + +lemma LIMSEQ_Pair: + assumes "X ----> a" and "Y ----> b" + shows "(\n. (X n, Y n)) ----> (a, b)" +proof (rule LIMSEQ_I) + fix r :: real assume "0 < r" + then have "0 < r / sqrt 2" (is "0 < ?s") + by (simp add: divide_pos_pos) + obtain M where M: "\n\M. norm (X n - a) < ?s" + using LIMSEQ_D [OF `X ----> a` `0 < ?s`] .. + obtain N where N: "\n\N. norm (Y n - b) < ?s" + using LIMSEQ_D [OF `Y ----> b` `0 < ?s`] .. + have "\n\max M N. norm ((X n, Y n) - (a, b)) < r" + using M N by (simp add: real_sqrt_sum_squares_less norm_Pair) + then show "\n0. \n\n0. norm ((X n, Y n) - (a, b)) < r" .. +qed + +lemma Cauchy_Pair: + assumes "Cauchy X" and "Cauchy Y" + shows "Cauchy (\n. (X n, Y n))" +proof (rule CauchyI) + fix r :: real assume "0 < r" + then have "0 < r / sqrt 2" (is "0 < ?s") + by (simp add: divide_pos_pos) + obtain M where M: "\m\M. \n\M. norm (X m - X n) < ?s" + using CauchyD [OF `Cauchy X` `0 < ?s`] .. + obtain N where N: "\m\N. \n\N. norm (Y m - Y n) < ?s" + using CauchyD [OF `Cauchy Y` `0 < ?s`] .. + have "\m\max M N. \n\max M N. norm ((X m, Y m) - (X n, Y n)) < r" + using M N by (simp add: real_sqrt_sum_squares_less norm_Pair) + then show "\n0. \m\n0. \n\n0. norm ((X m, Y m) - (X n, Y n)) < r" .. +qed + +lemma LIM_Pair: + assumes "f -- x --> a" and "g -- x --> b" + shows "(\x. (f x, g x)) -- x --> (a, b)" +proof (rule LIM_I) + fix r :: real assume "0 < r" + then have "0 < r / sqrt 2" (is "0 < ?e") + by (simp add: divide_pos_pos) + obtain s where s: "0 < s" + "\z. z \ x \ norm (z - x) < s \ norm (f z - a) < ?e" + using LIM_D [OF `f -- x --> a` `0 < ?e`] by fast + obtain t where t: "0 < t" + "\z. z \ x \ norm (z - x) < t \ norm (g z - b) < ?e" + using LIM_D [OF `g -- x --> b` `0 < ?e`] by fast + have "0 < min s t \ + (\z. z \ x \ norm (z - x) < min s t \ norm ((f z, g z) - (a, b)) < r)" + using s t by (simp add: real_sqrt_sum_squares_less norm_Pair) + then show + "\s>0. \z. z \ x \ norm (z - x) < s \ norm ((f z, g z) - (a, b)) < r" .. +qed + +lemma isCont_Pair [simp]: + "\isCont f x; isCont g x\ \ isCont (\x. (f x, g x)) x" + unfolding isCont_def by (rule LIM_Pair) + + +subsection {* Product is a complete vector space *} + +instance "*" :: (banach, banach) banach +proof + fix X :: "nat \ 'a \ 'b" assume "Cauchy X" + have 1: "(\n. fst (X n)) ----> lim (\n. fst (X n))" + using fst.Cauchy [OF `Cauchy X`] + by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff) + have 2: "(\n. snd (X n)) ----> lim (\n. snd (X n))" + using snd.Cauchy [OF `Cauchy X`] + by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff) + have "X ----> (lim (\n. fst (X n)), lim (\n. snd (X n)))" + using LIMSEQ_Pair [OF 1 2] by simp + then show "convergent X" + by (rule convergentI) +qed + +subsection {* Frechet derivatives involving pairs *} + +lemma FDERIV_Pair: + assumes f: "FDERIV f x :> f'" and g: "FDERIV g x :> g'" + shows "FDERIV (\x. (f x, g x)) x :> (\h. (f' h, g' h))" +apply (rule FDERIV_I) +apply (rule bounded_linear_Pair) +apply (rule FDERIV_bounded_linear [OF f]) +apply (rule FDERIV_bounded_linear [OF g]) +apply (simp add: norm_Pair) +apply (rule real_LIM_sandwich_zero) +apply (rule LIM_add_zero) +apply (rule FDERIV_D [OF f]) +apply (rule FDERIV_D [OF g]) +apply (rename_tac h) +apply (simp add: divide_nonneg_pos) +apply (rename_tac h) +apply (subst add_divide_distrib [symmetric]) +apply (rule divide_right_mono [OF _ norm_ge_zero]) +apply (rule order_trans [OF sqrt_add_le_add_sqrt]) +apply simp +apply simp +apply simp +done + +end