# HG changeset patch # User huffman # Date 1243556658 25200 # Node ID a2f737a726552ad9342432182f6f503f2db9ada5 # Parent f41c023d90bc5e2c67d89800d4c26c6facbe1ba1 fix references to dist_def diff -r f41c023d90bc -r a2f737a72655 src/HOL/Library/Determinants.thy --- a/src/HOL/Library/Determinants.thy Thu May 28 17:09:51 2009 -0700 +++ b/src/HOL/Library/Determinants.thy Thu May 28 17:24:18 2009 -0700 @@ -923,10 +923,10 @@ shows "linear f" proof- {fix v w - {fix x note fd[rule_format, of x 0, unfolded dist_def f0 diff_0_right] } + {fix x note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] } note th0 = this have "f v \ f w = c^2 * (v \ w)" - unfolding dot_norm_neg dist_def[symmetric] + unfolding dot_norm_neg dist_norm[symmetric] unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)} note fc = this show ?thesis unfolding linear_def vector_eq @@ -947,7 +947,7 @@ unfolding orthogonal_transformation apply (rule iffI) apply clarify - apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_def) + apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_norm) apply (rule conjI) apply (rule isometry_linear) apply simp @@ -955,7 +955,7 @@ apply clarify apply (erule_tac x=v in allE) apply (erule_tac x=0 in allE) - by (simp add: dist_def) + by (simp add: dist_norm) (* ------------------------------------------------------------------------- *) (* Can extend an isometry from unit sphere. *) @@ -995,13 +995,13 @@ moreover {assume "x = 0" "y \ 0" then have "dist (?g x) (?g y) = dist x y" - apply (simp add: dist_def norm_mul) + apply (simp add: dist_norm norm_mul) apply (rule f1[rule_format]) by(simp add: norm_mul field_simps)} moreover {assume "x \ 0" "y = 0" then have "dist (?g x) (?g y) = dist x y" - apply (simp add: dist_def norm_mul) + apply (simp add: dist_norm norm_mul) apply (rule f1[rule_format]) by(simp add: norm_mul field_simps)} moreover @@ -1015,9 +1015,9 @@ "norm (f (inverse (norm x) *s x) - f (inverse (norm y) *s y)) = norm (inverse (norm x) *s x - inverse (norm y) *s y)" using z - by (auto simp add: vector_smult_assoc field_simps norm_mul intro: f1[rule_format] fd1[rule_format, unfolded dist_def]) + by (auto simp add: vector_smult_assoc field_simps norm_mul intro: f1[rule_format] fd1[rule_format, unfolded dist_norm]) from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" - by (simp add: dist_def)} + by (simp add: dist_norm)} ultimately have "dist (?g x) (?g y) = dist x y" by blast} note thd = this show ?thesis