# HG changeset patch # User nipkow # Date 1536848105 -7200 # Node ID a319e3c522ba44d9c7842c8dc4219eabc5b18e02 # Parent d6d5fb521896d649d2e2e88800fd5581cb7d5c1c removed redundant lemma diff -r d6d5fb521896 -r a319e3c522ba src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Thu Sep 13 15:15:50 2018 +0200 +++ b/src/HOL/Library/Multiset.thy Thu Sep 13 16:15:05 2018 +0200 @@ -1890,9 +1890,6 @@ lemma union_mset_compl[simp]: "\x. P x = (\ Q x) \ filter_mset P M + filter_mset Q M = M" by (induction M) simp_all -lemma mset_compl_union: "mset [x\xs. P x] + mset [x\xs. \P x] = mset xs" - by (induct xs) auto - lemma nth_mem_mset: "i < length ls \ (ls ! i) \# mset ls" proof (induct ls arbitrary: i) case Nil diff -r d6d5fb521896 -r a319e3c522ba src/HOL/ex/Quicksort.thy --- a/src/HOL/ex/Quicksort.thy Thu Sep 13 15:15:50 2018 +0200 +++ b/src/HOL/ex/Quicksort.thy Thu Sep 13 16:15:05 2018 +0200 @@ -22,7 +22,7 @@ lemma quicksort_permutes [simp]: "mset (quicksort xs) = mset xs" - by (induct xs rule: quicksort.induct) (simp_all add: mset_compl_union ac_simps) +by (induction xs rule: quicksort.induct) (simp_all) lemma set_quicksort [simp]: "set (quicksort xs) = set xs" proof -