# HG changeset patch # User ballarin # Date 1039597968 -3600 # Node ID a31e04831dd12171e3b5b5bea2311a29df4e5903 # Parent 2241191a3c54305f1e66b719d0048565d1e19e1f HOL/GroupTheory/Summation.thy added: summation operator for abelian groups. diff -r 2241191a3c54 -r a31e04831dd1 NEWS --- a/NEWS Tue Dec 10 10:40:32 2002 +0100 +++ b/NEWS Wed Dec 11 10:12:48 2002 +0100 @@ -90,6 +90,8 @@ *** HOL *** +* GroupTheory: new, experimental summation operator for abelian groups. + * New tactic "trans_tac" and method "trans" instantiate Provers/linorder.ML for axclasses "order" and "linorder" (predicates "<=", "<" and "="). diff -r 2241191a3c54 -r a31e04831dd1 src/HOL/GroupTheory/Group.thy --- a/src/HOL/GroupTheory/Group.thy Tue Dec 10 10:40:32 2002 +0100 +++ b/src/HOL/GroupTheory/Group.thy Wed Dec 11 10:12:48 2002 +0100 @@ -13,8 +13,7 @@ carrier :: "'a set" sum :: "'a \ 'a \ 'a" (infixl "\\" 65) -locale semigroup = - fixes S (structure) +locale semigroup = struct S + assumes sum_funcset: "sum S \ carrier S \ carrier S \ carrier S" and sum_assoc: "[|x \ carrier S; y \ carrier S; z \ carrier S|] diff -r 2241191a3c54 -r a31e04831dd1 src/HOL/GroupTheory/README.html --- a/src/HOL/GroupTheory/README.html Tue Dec 10 10:40:32 2002 +0100 +++ b/src/HOL/GroupTheory/README.html Wed Dec 11 10:12:48 2002 +0100 @@ -25,6 +25,10 @@
  • Theory Sylow contains a proof of the first Sylow theorem. + +
  • Theory Summation Extends +abelian groups by a summation operator for finite sets (provided by +Clemens Ballarin).
    diff -r 2241191a3c54 -r a31e04831dd1 src/HOL/GroupTheory/ROOT.ML --- a/src/HOL/GroupTheory/ROOT.ML Tue Dec 10 10:40:32 2002 +0100 +++ b/src/HOL/GroupTheory/ROOT.ML Wed Dec 11 10:12:48 2002 +0100 @@ -3,3 +3,4 @@ use_thy "Sylow"; use_thy "Module"; +use_thy "Summation"; \ No newline at end of file diff -r 2241191a3c54 -r a31e04831dd1 src/HOL/GroupTheory/Summation.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/GroupTheory/Summation.thy Wed Dec 11 10:12:48 2002 +0100 @@ -0,0 +1,590 @@ +(* Title: Summation Operator for Abelian Groups + ID: $Id$ + Author: Clemens Ballarin, started 19 November 2002 + Copyright: TU Muenchen +*) + +theory Summation = Group: + +(* Instantiation of LC from Finite_Set.thy is not possible, + because here we have explicit typing rules like x : carrier G. + We introduce an explicit argument for the domain D *) + +consts + foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set" + +inductive "foldSetD D f e" + intros + emptyI [intro]: "e : D ==> ({}, e) : foldSetD D f e" + insertI [intro]: "[| x ~: A; f x y : D; (A, y) : foldSetD D f e |] ==> + (insert x A, f x y) : foldSetD D f e" + +inductive_cases empty_foldSetDE [elim!]: "({}, x) : foldSetD D f e" + +constdefs + foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" + "foldD D f e A == THE x. (A, x) : foldSetD D f e" + +lemma foldSetD_closed: + "[| (A, z) : foldSetD D f e ; e : D; !!x y. [| x : A; y : D |] ==> f x y : D + |] ==> z : D"; + by (erule foldSetD.elims) auto + +lemma Diff1_foldSetD: + "[| (A - {x}, y) : foldSetD D f e; x : A; f x y : D |] ==> + (A, f x y) : foldSetD D f e" + apply (erule insert_Diff [THEN subst], rule foldSetD.intros) + apply auto + done + +lemma foldSetD_imp_finite [simp]: "(A, x) : foldSetD D f e ==> finite A" + by (induct set: foldSetD) auto + +lemma finite_imp_foldSetD: + "[| finite A; e : D; !!x y. [| x : A; y : D |] ==> f x y : D |] ==> + EX x. (A, x) : foldSetD D f e" +proof (induct set: Finites) + case empty then show ?case by auto +next + case (insert F x) + then obtain y where y: "(F, y) : foldSetD D f e" by auto + with insert have "y : D" by (auto dest: foldSetD_closed) + with y and insert have "(insert x F, f x y) : foldSetD D f e" + by (intro foldSetD.intros) auto + then show ?case .. +qed + +subsubsection {* Left-commutative operations *} + +locale LCD = + fixes B :: "'b set" + and D :: "'a set" + and f :: "'b => 'a => 'a" (infixl "\" 70) + assumes left_commute: "[| x : B; y : B; z : D |] ==> x \ (y \ z) = y \ (x \ z)" + and f_closed [simp, intro!]: "!!x y. [| x : B; y : D |] ==> f x y : D" + +lemma (in LCD) foldSetD_closed [dest]: + "(A, z) : foldSetD D f e ==> z : D"; + by (erule foldSetD.elims) auto + +lemma (in LCD) Diff1_foldSetD: + "[| (A - {x}, y) : foldSetD D f e; x : A; A <= B |] ==> + (A, f x y) : foldSetD D f e" + apply (subgoal_tac "x : B") + prefer 2 apply fast + apply (erule insert_Diff [THEN subst], rule foldSetD.intros) + apply auto + done + +lemma (in LCD) foldSetD_imp_finite [simp]: + "(A, x) : foldSetD D f e ==> finite A" + by (induct set: foldSetD) auto + +lemma (in LCD) finite_imp_foldSetD: + "[| finite A; A <= B; e : D |] ==> EX x. (A, x) : foldSetD D f e" +proof (induct set: Finites) + case empty then show ?case by auto +next + case (insert F x) + then obtain y where y: "(F, y) : foldSetD D f e" by auto + with insert have "y : D" by auto + with y and insert have "(insert x F, f x y) : foldSetD D f e" + by (intro foldSetD.intros) auto + then show ?case .. +qed + +lemma (in LCD) foldSetD_determ_aux: + "e : D ==> ALL A x. A <= B & card A < n --> (A, x) : foldSetD D f e --> + (ALL y. (A, y) : foldSetD D f e --> y = x)" + apply (induct n) + apply (auto simp add: less_Suc_eq) + apply (erule foldSetD.cases) + apply blast + apply (erule foldSetD.cases) + apply blast + apply clarify + txt {* force simplification of @{text "card A < card (insert ...)"}. *} + apply (erule rev_mp) + apply (simp add: less_Suc_eq_le) + apply (rule impI) + apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb") + apply (subgoal_tac "Aa = Ab") + prefer 2 apply (blast elim!: equalityE) + apply blast + txt {* case @{prop "xa \ xb"}. *} + apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab") + prefer 2 apply (blast elim!: equalityE) + apply clarify + apply (subgoal_tac "Aa = insert xb Ab - {xa}") + prefer 2 apply blast + apply (subgoal_tac "card Aa <= card Ab") + prefer 2 + apply (rule Suc_le_mono [THEN subst]) + apply (simp add: card_Suc_Diff1) + apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE]) + apply (blast intro: foldSetD_imp_finite finite_Diff) +(* new subgoal from finite_imp_foldSetD *) + apply best (* blast doesn't seem to solve this *) + apply assumption + apply (frule (1) Diff1_foldSetD) +(* new subgoal from Diff1_foldSetD *) + apply best +(* +apply (best del: foldSetD_closed elim: foldSetD_closed) + apply (rule f_closed) apply assumption apply (rule foldSetD_closed) + prefer 3 apply assumption apply (rule e_closed) + apply (rule f_closed) apply force apply assumption +*) + apply (subgoal_tac "ya = f xb x") + prefer 2 +(* new subgoal to make IH applicable *) + apply (subgoal_tac "Aa <= B") + prefer 2 apply best + apply (blast del: equalityCE) + apply (subgoal_tac "(Ab - {xa}, x) : foldSetD D f e") + prefer 2 apply simp + apply (subgoal_tac "yb = f xa x") + prefer 2 +(* apply (drule_tac x = xa in Diff1_foldSetD) + apply assumption + apply (rule f_closed) apply best apply (rule foldSetD_closed) + prefer 3 apply assumption apply (rule e_closed) + apply (rule f_closed) apply best apply assumption +*) + apply (blast del: equalityCE dest: Diff1_foldSetD) + apply (simp (no_asm_simp)) + apply (rule left_commute) + apply assumption apply best apply best + done + +lemma (in LCD) foldSetD_determ: + "[| (A, x) : foldSetD D f e; (A, y) : foldSetD D f e; e : D; A <= B |] + ==> y = x" + by (blast intro: foldSetD_determ_aux [rule_format]) + +lemma (in LCD) foldD_equality: + "[| (A, y) : foldSetD D f e; e : D; A <= B |] ==> foldD D f e A = y" + by (unfold foldD_def) (blast intro: foldSetD_determ) + +lemma foldD_empty [simp]: + "e : D ==> foldD D f e {} = e" + by (unfold foldD_def) blast + +lemma (in LCD) foldD_insert_aux: + "[| x ~: A; x : B; e : D; A <= B |] ==> + ((insert x A, v) : foldSetD D f e) = + (EX y. (A, y) : foldSetD D f e & v = f x y)" + apply auto + apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) + apply (fastsimp dest: foldSetD_imp_finite) +(* new subgoal by finite_imp_foldSetD *) + apply assumption + apply assumption + apply (blast intro: foldSetD_determ) + done + +lemma (in LCD) foldD_insert: + "[| finite A; x ~: A; x : B; e : D; A <= B |] ==> + foldD D f e (insert x A) = f x (foldD D f e A)" + apply (unfold foldD_def) + apply (simp add: foldD_insert_aux) + apply (rule the_equality) + apply (auto intro: finite_imp_foldSetD + cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) + done + +lemma (in LCD) foldD_closed [simp]: + "[| finite A; e : D; A <= B |] ==> foldD D f e A : D" +proof (induct set: Finites) + case empty then show ?case by (simp add: foldD_empty) +next + case insert then show ?case by (simp add: foldD_insert) +qed + +lemma (in LCD) foldD_commute: + "[| finite A; x : B; e : D; A <= B |] ==> + f x (foldD D f e A) = foldD D f (f x e) A" + apply (induct set: Finites) + apply simp + apply (auto simp add: left_commute foldD_insert) + done + +lemma Int_mono2: + "[| A <= C; B <= C |] ==> A Int B <= C" + by blast + +lemma (in LCD) foldD_nest_Un_Int: + "[| finite A; finite C; e : D; A <= B; C <= B |] ==> + foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" + apply (induct set: Finites) + apply simp + apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb + Int_mono2 Un_subset_iff) + done + +lemma (in LCD) foldD_nest_Un_disjoint: + "[| finite A; finite B; A Int B = {}; e : D; A <= B; C <= B |] + ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" + by (simp add: foldD_nest_Un_Int) + +-- {* Delete rules to do with @{text foldSetD} relation. *} + +declare foldSetD_imp_finite [simp del] + empty_foldSetDE [rule del] + foldSetD.intros [rule del] +declare (in LCD) + foldSetD_closed [rule del] + +subsubsection {* Commutative monoids *} + +text {* + We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"} + instead of @{text "'b => 'a => 'a"}. +*} + +locale ACeD = + fixes D :: "'a set" + and f :: "'a => 'a => 'a" (infixl "\" 70) + and e :: 'a + assumes ident [simp]: "x : D ==> x \ e = x" + and commute: "[| x : D; y : D |] ==> x \ y = y \ x" + and assoc: "[| x : D; y : D; z : D |] ==> (x \ y) \ z = x \ (y \ z)" + and e_closed [simp]: "e : D" + and f_closed [simp]: "[| x : D; y : D |] ==> x \ y : D" + +lemma (in ACeD) left_commute: + "[| x : D; y : D; z : D |] ==> x \ (y \ z) = y \ (x \ z)" +proof - + assume D: "x : D" "y : D" "z : D" + then have "x \ (y \ z) = (y \ z) \ x" by (simp add: commute) + also from D have "... = y \ (z \ x)" by (simp add: assoc) + also from D have "z \ x = x \ z" by (simp add: commute) + finally show ?thesis . +qed + +lemmas (in ACeD) AC = assoc commute left_commute + +lemma (in ACeD) left_ident [simp]: "x : D ==> e \ x = x" +proof - + assume D: "x : D" + have "x \ e = x" by (rule ident) + with D show ?thesis by (simp add: commute) +qed + +lemma (in ACeD) foldD_Un_Int: + "[| finite A; finite B; A <= D; B <= D |] ==> + foldD D f e A \ foldD D f e B = + foldD D f e (A Un B) \ foldD D f e (A Int B)" + apply (induct set: Finites) + apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) +(* left_commute is required to show premise of LCD.intro *) + apply (simp add: AC insert_absorb Int_insert_left + LCD.foldD_insert [OF LCD.intro [of D]] + LCD.foldD_closed [OF LCD.intro [of D]] + Int_mono2 Un_subset_iff) + done + +lemma (in ACeD) foldD_Un_disjoint: + "[| finite A; finite B; A Int B = {}; A <= D; B <= D |] ==> + foldD D f e (A Un B) = foldD D f e A \ foldD D f e B" + by (simp add: foldD_Un_Int + left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff) + +subsection {* Abelian groups with summation operator *} + +lemma (in abelian_group) sum_lcomm: + "[| x : carrier G; y : carrier G; z : carrier G |] ==> + x \ (y \ z) = y \ (x \ z)" +proof - + assume "x : carrier G" "y : carrier G" "z : carrier G" + then have "x \ (y \ z) = (x \ y) \ z" by (simp add: sum_assoc) + also from prems have "... = (y \ x) \ z" by (simp add: sum_commute) + also from prems have "... = y \ (x \ z)" by (simp add: sum_assoc) + finally show ?thesis . +qed + +lemmas (in abelian_group) AC = sum_assoc sum_commute sum_lcomm + +record ('a, 'b) group_with_sum = "'a group" + + setSum :: "['b => 'a, 'b set] => 'a" + +(* TODO: nice syntax for the summation operator inside the locale + like \\ i\A. f i, probably needs hand-coded translation *) + +locale agroup_with_sum = abelian_group + + assumes setSum_def: + "setSum G f A = (if finite A then foldD (carrier G) (op \ o f) \ A else \)" + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} + +lemma (in agroup_with_sum) setSum_empty [simp]: + "setSum G f {} = \" + by (simp add: setSum_def) + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_simp_tac; thy)) *} + +lemma insert_conj: + "[| a = b; a : B |] ==> a : insert b B" + by blast + +declare funcsetI [intro] + funcset_mem [dest] + +lemma (in agroup_with_sum) setSum_insert [simp]: + "[| finite F; a \ F; f : F -> carrier G; f a : carrier G |] ==> + setSum G f (insert a F) = f a \ setSum G f F" + apply (rule trans) + apply (simp add: setSum_def) + apply (rule trans) + apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) + apply simp + apply (rule sum_lcomm) + apply fast apply fast apply assumption + apply (fastsimp intro: sum_closed) + apply simp+ apply fast + apply (auto simp add: setSum_def) + done + +lemma (in agroup_with_sum) setSum_0: + "setSum G (%i. \) A = \" +(* apply (case_tac "finite A") + prefer 2 apply (simp add: setSum_def) *) +proof (cases "finite A") + case True then show ?thesis + proof (induct set: Finites) + case empty show ?case by simp + next + case (insert A a) + have "(%i. \) : A -> carrier G" by auto + with insert show ?case by simp + qed +next + case False then show ?thesis by (simp add: setSum_def) +qed + +(* +lemma setSum_eq_0_iff [simp]: + "finite F ==> (setSum f F = 0) = (ALL a:F. f a = (0::nat))" + by (induct set: Finites) auto + +lemma setSum_SucD: "setSum f A = Suc n ==> EX a:A. 0 < f a" + apply (case_tac "finite A") + prefer 2 apply (simp add: setSum_def) + apply (erule rev_mp) + apply (erule finite_induct) + apply auto + done + +lemma card_eq_setSum: "finite A ==> card A = setSum (\x. 1) A" +*) -- {* Could allow many @{text "card"} proofs to be simplified. *} +(* + by (induct set: Finites) auto +*) + +lemma (in agroup_with_sum) setSum_closed: + "[| finite A; f : A -> carrier G |] ==> setSum G f A : carrier G" +proof (induct set: Finites) + case empty show ?case by simp +next + case (insert A a) + then have a: "f a : carrier G" by fast + from insert have A: "f : A -> carrier G" by fast + from insert A a show ?case by simp +qed +(* +lemma (in agroup_with_sum) setSum_closed: + "[| finite A; f``A <= carrier G |] ==> setSum G f A : carrier G" + +lemma (in agroup_with_sum) setSum_closed: + "[| finite A; !!i. i : A ==> f i : carrier G |] ==> + setSum G f A : carrier G" +*) + +lemma funcset_Int_left [simp, intro]: + "[| f : A -> C; f : B -> C |] ==> f : A Int B -> C" + by fast + +lemma funcset_Int_right: + "(f : A -> B Int C) = (f : A -> B & f : A -> C)" + by fast + +lemma funcset_Un_right: + "[| f : A -> B; f : A -> C |] ==> f : A -> B Un C" + by fast + +lemma funcset_Un_left [iff]: + "(f : A Un B -> C) = (f : A -> C & f : B -> C)" + by fast + +lemma (in agroup_with_sum) setSum_Un_Int: + "[| finite A; finite B; g : A -> carrier G; g : B -> carrier G |] ==> + setSum G g (A Un B) \ setSum G g (A Int B) = setSum G g A \ setSum G g B" + -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} +proof (induct set: Finites) + case empty then show ?case by (simp add: setSum_closed) +next + case (insert A a) + then have a: "g a : carrier G" by fast + from insert have A: "g : A -> carrier G" by fast + from insert A a show ?case + by (simp add: AC Int_insert_left insert_absorb setSum_closed + Int_mono2 Un_subset_iff) +qed + +lemma (in agroup_with_sum) setSum_Un_disjoint: + "[| finite A; finite B; A Int B = {}; + g : A -> carrier G; g : B -> carrier G |] + ==> setSum G g (A Un B) = setSum G g A \ setSum G g B" + apply (subst setSum_Un_Int [symmetric]) + apply (auto simp add: setSum_closed) + done + +(* +lemma setSum_UN_disjoint: + fixes f :: "'a => 'b::plus_ac0" + shows + "finite I ==> (ALL i:I. finite (A i)) ==> + (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> + setSum f (UNION I A) = setSum (\i. setSum f (A i)) I" + apply (induct set: Finites) + apply simp + apply atomize + apply (subgoal_tac "ALL i:F. x \ i") + prefer 2 apply blast + apply (subgoal_tac "A x Int UNION F A = {}") + prefer 2 apply blast + apply (simp add: setSum_Un_disjoint) + done +*) +lemma (in agroup_with_sum) setSum_addf: + "[| finite A; f : A -> carrier G; g : A -> carrier G |] ==> + setSum G (%x. f x \ g x) A = (setSum G f A \ setSum G g A)" +proof (induct set: Finites) + case empty show ?case by simp +next + case (insert A a) then + have fA: "f : A -> carrier G" by fast + from insert have fa: "f a : carrier G" by fast + from insert have gA: "g : A -> carrier G" by fast + from insert have ga: "g a : carrier G" by fast + from insert have fga: "(%x. f x \ g x) a : carrier G" by (simp add: Pi_def) + from insert have fgA: "(%x. f x \ g x) : A -> carrier G" + by (simp add: Pi_def) + show ?case (* check if all simps are really necessary *) + by (simp add: insert fA fa gA ga fgA fga AC setSum_closed Int_insert_left insert_absorb Int_mono2 Un_subset_iff) +qed + +(* +lemma setSum_Un: "finite A ==> finite B ==> + (setSum f (A Un B) :: nat) = setSum f A + setSum f B - setSum f (A Int B)" + -- {* For the natural numbers, we have subtraction. *} + apply (subst setSum_Un_Int [symmetric]) + apply auto + done + +lemma setSum_diff1: "(setSum f (A - {a}) :: nat) = + (if a:A then setSum f A - f a else setSum f A)" + apply (case_tac "finite A") + prefer 2 apply (simp add: setSum_def) + apply (erule finite_induct) + apply (auto simp add: insert_Diff_if) + apply (drule_tac a = a in mk_disjoint_insert) + apply auto + done +*) + +lemma (in agroup_with_sum) setSum_cong: + "[| A = B; g : B -> carrier G; + !!i. i : B ==> f i = g i |] ==> setSum G f A = setSum G g B" +proof - + assume prems: "A = B" "g : B -> carrier G" + "!!i. i : B ==> f i = g i" + show ?thesis + proof (cases "finite B") + case True + then have "!!A. [| A = B; g : B -> carrier G; + !!i. i : B ==> f i = g i |] ==> setSum G f A = setSum G g B" + proof induct + case empty thus ?case by simp + next + case (insert B x) + then have "setSum G f A = setSum G f (insert x B)" by simp + also from insert have "... = f x \ setSum G f B" + proof (intro setSum_insert) + show "finite B" . + next + show "x ~: B" . + next + assume "x ~: B" "!!i. i \ insert x B \ f i = g i" + "g \ insert x B \ carrier G" + thus "f : B -> carrier G" by fastsimp + next + assume "x ~: B" "!!i. i \ insert x B \ f i = g i" + "g \ insert x B \ carrier G" + thus "f x \ carrier G" by fastsimp + qed + also from insert have "... = g x \ setSum G g B" by fastsimp + also from insert have "... = setSum G g (insert x B)" + by (intro setSum_insert [THEN sym]) auto + finally show ?case . + qed + with prems show ?thesis by simp + next + case False with prems show ?thesis by (simp add: setSum_def) + qed +qed + +lemma (in agroup_with_sum) setSum_cong1 [cong]: + "[| A = B; !!i. i : B ==> f i = g i; + g : B -> carrier G = True |] ==> setSum G f A = setSum G g B" + by (rule setSum_cong) fast+ + +text {*Usually, if this rule causes a failed congruence proof error, + the reason is that the premise @{text "g : B -> carrier G"} cannot be shown. + Adding Pi_def to the simpset is often useful. *} + +declare funcsetI [rule del] + funcset_mem [rule del] + +(*** Examples --- Summation over the integer interval {..n} ***) + +(* New locale where index set is restricted to nat *) + +locale agroup_with_natsum = agroup_with_sum + + assumes "False ==> setSum G f (A::nat set) = setSum G f A" + +lemma (in agroup_with_natsum) natSum_0 [simp]: + "f : {0::nat} -> carrier G ==> setSum G f {..0} = f 0" +by (simp add: Pi_def) + +lemma (in agroup_with_natsum) natsum_Suc [simp]: + "f : {..Suc n} -> carrier G ==> + setSum G f {..Suc n} = (f (Suc n) \ setSum G f {..n})" +by (simp add: Pi_def atMost_Suc) + +lemma (in agroup_with_natsum) natsum_Suc2: + "f : {..Suc n} -> carrier G ==> + setSum G f {..Suc n} = (setSum G (%i. f (Suc i)) {..n} \ f 0)" +proof (induct n) + case 0 thus ?case by (simp add: Pi_def) +next + case Suc thus ?case by (simp add: sum_assoc Pi_def setSum_closed) +qed + +lemma (in agroup_with_natsum) natsum_zero [simp]: + "setSum G (%i. \) {..n::nat} = \" +by (induct n) (simp_all add: Pi_def) + +lemma (in agroup_with_natsum) natsum_add [simp]: + "[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==> + setSum G (%i. f i \ g i) {..n::nat} = setSum G f {..n} \ setSum G g {..n}" +by (induct n) (simp_all add: AC Pi_def setSum_closed) + +end + diff -r 2241191a3c54 -r a31e04831dd1 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Tue Dec 10 10:40:32 2002 +0100 +++ b/src/HOL/IsaMakefile Wed Dec 11 10:12:48 2002 +0100 @@ -284,6 +284,7 @@ GroupTheory/Exponent.thy \ GroupTheory/Group.thy \ GroupTheory/Module.thy GroupTheory/Ring.thy \ + GroupTheory/Summation.thy \ GroupTheory/Sylow.thy \ GroupTheory/ROOT.ML \ GroupTheory/document/root.tex