# HG changeset patch # User haftmann # Date 1291412060 -3600 # Node ID a370b0fb6f099a6fe89faa03df33525f835229a9 # Parent 1d46d893d682ed499a7bbbcd21f63540f0dad76c lemma multiset_of_rev diff -r 1d46d893d682 -r a370b0fb6f09 src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Fri Dec 03 22:34:20 2010 +0100 +++ b/src/HOL/Library/Multiset.thy Fri Dec 03 22:34:20 2010 +0100 @@ -725,7 +725,7 @@ lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])" by (induct x) auto -lemma set_of_multiset_of[simp]: "set_of(multiset_of x) = set x" +lemma set_of_multiset_of[simp]: "set_of (multiset_of x) = set x" by (induct x) auto lemma mem_set_multiset_eq: "x \ set xs = (x :# multiset_of xs)" @@ -739,6 +739,10 @@ "multiset_of (filter P xs) = {#x :# multiset_of xs. P x #}" by (induct xs) simp_all +lemma multiset_of_rev [simp]: + "multiset_of (rev xs) = multiset_of xs" + by (induct xs) simp_all + lemma surj_multiset_of: "surj multiset_of" apply (unfold surj_def) apply (rule allI)