# HG changeset patch # User huffman # Date 1290889578 28800 # Node ID a3e505b236e76399d9da8e068e5a3308441d2655 # Parent d73659e8ccdd4ff1f193b0668d2b2b62d15ef9d1 rename function 'strict' to 'seq', which is its name in Haskell diff -r d73659e8ccdd -r a3e505b236e7 src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Sat Nov 27 18:51:15 2010 +0100 +++ b/src/HOLCF/Cfun.thy Sat Nov 27 12:26:18 2010 -0800 @@ -484,28 +484,28 @@ default_sort pcpo definition - strict :: "'a \ 'b \ 'b" where - "strict = (\ x. if x = \ then \ else ID)" + seq :: "'a \ 'b \ 'b" where + "seq = (\ x. if x = \ then \ else ID)" -lemma cont_strict: "cont (\x. if x = \ then \ else y)" +lemma cont_seq: "cont (\x. if x = \ then \ else y)" unfolding cont_def is_lub_def is_ub_def ball_simps by (simp add: lub_eq_bottom_iff) -lemma strict_conv_if: "strict\x = (if x = \ then \ else ID)" -unfolding strict_def by (simp add: cont_strict) +lemma seq_conv_if: "seq\x = (if x = \ then \ else ID)" +unfolding seq_def by (simp add: cont_seq) -lemma strict1 [simp]: "strict\\ = \" -by (simp add: strict_conv_if) +lemma seq1 [simp]: "seq\\ = \" +by (simp add: seq_conv_if) -lemma strict2 [simp]: "x \ \ \ strict\x = ID" -by (simp add: strict_conv_if) +lemma seq2 [simp]: "x \ \ \ seq\x = ID" +by (simp add: seq_conv_if) -lemma strict3 [simp]: "strict\x\\ = \" -by (simp add: strict_conv_if) +lemma seq3 [simp]: "seq\x\\ = \" +by (simp add: seq_conv_if) definition strictify :: "('a \ 'b) \ 'a \ 'b" where - "strictify = (\ f x. strict\x\(f\x))" + "strictify = (\ f x. seq\x\(f\x))" lemma strictify_conv_if: "strictify\f\x = (if x = \ then \ else f\x)" unfolding strictify_def by simp diff -r d73659e8ccdd -r a3e505b236e7 src/HOLCF/Fixrec.thy --- a/src/HOLCF/Fixrec.thy Sat Nov 27 18:51:15 2010 +0100 +++ b/src/HOLCF/Fixrec.thy Sat Nov 27 12:26:18 2010 -0800 @@ -107,7 +107,7 @@ definition match_UU :: "'a \ 'c match \ 'c match" where - "match_UU = (\ x k. strict\x\fail)" + "match_UU = (\ x k. seq\x\fail)" definition match_Pair :: "'a::cpo \ 'b::cpo \ ('a \ 'b \ 'c match) \ 'c match" diff -r d73659e8ccdd -r a3e505b236e7 src/HOLCF/One.thy --- a/src/HOLCF/One.thy Sat Nov 27 18:51:15 2010 +0100 +++ b/src/HOLCF/One.thy Sat Nov 27 12:26:18 2010 -0800 @@ -54,7 +54,7 @@ definition one_case :: "'a::pcpo \ one \ 'a" where - "one_case = (\ a x. strict\x\a)" + "one_case = (\ a x. seq\x\a)" translations "case x of XCONST ONE \ t" == "CONST one_case\t\x" diff -r d73659e8ccdd -r a3e505b236e7 src/HOLCF/Sprod.thy --- a/src/HOLCF/Sprod.thy Sat Nov 27 18:51:15 2010 +0100 +++ b/src/HOLCF/Sprod.thy Sat Nov 27 12:26:18 2010 -0800 @@ -37,11 +37,11 @@ definition spair :: "'a \ 'b \ ('a ** 'b)" where - "spair = (\ a b. Abs_sprod (strict\b\a, strict\a\b))" + "spair = (\ a b. Abs_sprod (seq\b\a, seq\a\b))" definition ssplit :: "('a \ 'b \ 'c) \ ('a ** 'b) \ 'c" where - "ssplit = (\ f p. strict\p\(f\(sfst\p)\(ssnd\p)))" + "ssplit = (\ f p. seq\p\(f\(sfst\p)\(ssnd\p)))" syntax "_stuple" :: "['a, args] => 'a ** 'b" ("(1'(:_,/ _:'))") @@ -54,10 +54,10 @@ subsection {* Case analysis *} -lemma spair_sprod: "(strict\b\a, strict\a\b) \ sprod" -by (simp add: sprod_def strict_conv_if) +lemma spair_sprod: "(seq\b\a, seq\a\b) \ sprod" +by (simp add: sprod_def seq_conv_if) -lemma Rep_sprod_spair: "Rep_sprod (:a, b:) = (strict\b\a, strict\a\b)" +lemma Rep_sprod_spair: "Rep_sprod (:a, b:) = (seq\b\a, seq\a\b)" by (simp add: spair_def cont_Abs_sprod Abs_sprod_inverse spair_sprod) lemmas Rep_sprod_simps = @@ -82,16 +82,16 @@ by (simp add: Rep_sprod_simps) lemma spair_bottom_iff [simp]: "((:x, y:) = \) = (x = \ \ y = \)" -by (simp add: Rep_sprod_simps strict_conv_if) +by (simp add: Rep_sprod_simps seq_conv_if) lemma spair_below_iff: "((:a, b:) \ (:c, d:)) = (a = \ \ b = \ \ (a \ c \ b \ d))" -by (simp add: Rep_sprod_simps strict_conv_if) +by (simp add: Rep_sprod_simps seq_conv_if) lemma spair_eq_iff: "((:a, b:) = (:c, d:)) = (a = c \ b = d \ (a = \ \ b = \) \ (c = \ \ d = \))" -by (simp add: Rep_sprod_simps strict_conv_if) +by (simp add: Rep_sprod_simps seq_conv_if) lemma spair_strict: "x = \ \ y = \ \ (:x, y:) = \" by simp @@ -177,7 +177,7 @@ by (rule compactI, simp add: ssnd_below_iff) lemma compact_spair: "\compact x; compact y\ \ compact (:x, y:)" -by (rule compact_sprod, simp add: Rep_sprod_spair strict_conv_if) +by (rule compact_sprod, simp add: Rep_sprod_spair seq_conv_if) lemma compact_spair_iff: "compact (:x, y:) = (x = \ \ y = \ \ (compact x \ compact y))" diff -r d73659e8ccdd -r a3e505b236e7 src/HOLCF/Ssum.thy --- a/src/HOLCF/Ssum.thy Sat Nov 27 18:51:15 2010 +0100 +++ b/src/HOLCF/Ssum.thy Sat Nov 27 12:26:18 2010 -0800 @@ -32,22 +32,22 @@ definition sinl :: "'a \ ('a ++ 'b)" where - "sinl = (\ a. Abs_ssum (strict\a\TT, a, \))" + "sinl = (\ a. Abs_ssum (seq\a\TT, a, \))" definition sinr :: "'b \ ('a ++ 'b)" where - "sinr = (\ b. Abs_ssum (strict\b\FF, \, b))" + "sinr = (\ b. Abs_ssum (seq\b\FF, \, b))" -lemma sinl_ssum: "(strict\a\TT, a, \) \ ssum" -by (simp add: ssum_def strict_conv_if) +lemma sinl_ssum: "(seq\a\TT, a, \) \ ssum" +by (simp add: ssum_def seq_conv_if) -lemma sinr_ssum: "(strict\b\FF, \, b) \ ssum" -by (simp add: ssum_def strict_conv_if) +lemma sinr_ssum: "(seq\b\FF, \, b) \ ssum" +by (simp add: ssum_def seq_conv_if) -lemma Rep_ssum_sinl: "Rep_ssum (sinl\a) = (strict\a\TT, a, \)" +lemma Rep_ssum_sinl: "Rep_ssum (sinl\a) = (seq\a\TT, a, \)" by (simp add: sinl_def cont_Abs_ssum Abs_ssum_inverse sinl_ssum) -lemma Rep_ssum_sinr: "Rep_ssum (sinr\b) = (strict\b\FF, \, b)" +lemma Rep_ssum_sinr: "Rep_ssum (sinr\b) = (seq\b\FF, \, b)" by (simp add: sinr_def cont_Abs_ssum Abs_ssum_inverse sinr_ssum) lemmas Rep_ssum_simps = @@ -60,16 +60,16 @@ text {* Ordering *} lemma sinl_below [simp]: "(sinl\x \ sinl\y) = (x \ y)" -by (simp add: Rep_ssum_simps strict_conv_if) +by (simp add: Rep_ssum_simps seq_conv_if) lemma sinr_below [simp]: "(sinr\x \ sinr\y) = (x \ y)" -by (simp add: Rep_ssum_simps strict_conv_if) +by (simp add: Rep_ssum_simps seq_conv_if) lemma sinl_below_sinr [simp]: "(sinl\x \ sinr\y) = (x = \)" -by (simp add: Rep_ssum_simps strict_conv_if) +by (simp add: Rep_ssum_simps seq_conv_if) lemma sinr_below_sinl [simp]: "(sinr\x \ sinl\y) = (x = \)" -by (simp add: Rep_ssum_simps strict_conv_if) +by (simp add: Rep_ssum_simps seq_conv_if) text {* Equality *}