# HG changeset patch # User wenzelm # Date 934985127 -7200 # Node ID a494a78fea3927b6ec3a31e77a46c44a58723bee # Parent d3ed595dd772d52d43b99607546e4e02d08f1da1 tuned; diff -r d3ed595dd772 -r a494a78fea39 src/HOL/Isar_examples/ExprCompiler.thy --- a/src/HOL/Isar_examples/ExprCompiler.thy Wed Aug 18 16:04:00 1999 +0200 +++ b/src/HOL/Isar_examples/ExprCompiler.thy Wed Aug 18 16:05:27 1999 +0200 @@ -108,23 +108,23 @@ assume "??P xs"; show "??P (x # xs)" (is "??Q x"); proof (induct ??Q x type: instr); - fix val; show "??Q (Const val)"; by brute_force; + fix val; show "??Q (Const val)"; by force; next; - fix adr; show "??Q (Load adr)"; by brute_force; + fix adr; show "??Q (Load adr)"; by force; next; - fix fun; show "??Q (Apply fun)"; by brute_force; + fix fun; show "??Q (Apply fun)"; by force; qed; qed; lemma exec_comp: "ALL stack. exec (comp e) stack env = eval e env # stack" (is "??P e"); proof (induct ??P e type: expr); - fix adr; show "??P (Variable adr)"; by brute_force; + fix adr; show "??P (Variable adr)"; by force; next; - fix val; show "??P (Constant val)"; by brute_force; + fix val; show "??P (Constant val)"; by force; next; fix fun e1 e2; assume "??P e1" "??P e2"; show "??P (Binop fun e1 e2)"; - by (brute_force simp add: exec_append); + by (force simp add: exec_append); qed; diff -r d3ed595dd772 -r a494a78fea39 src/HOL/Isar_examples/KnasterTarski.thy --- a/src/HOL/Isar_examples/KnasterTarski.thy Wed Aug 18 16:04:00 1999 +0200 +++ b/src/HOL/Isar_examples/KnasterTarski.thy Wed Aug 18 16:05:27 1999 +0200 @@ -9,7 +9,6 @@ theory KnasterTarski = Main:; text {* - According to the book ``Introduction to Lattices and Order'' (by B. A. Davey and H. A. Priestley, CUP 1990), the Knaster-Tarski fixpoint theorem is as follows (pages 93--94). Note that we have