# HG changeset patch # User chaieb # Date 1234196386 0 # Node ID a562ca0c408d1c60f23fd6c13d53ecd10931d773 # Parent eb7e62c0f53cc969724fac3c37b37faca1e0f715 A theory of greatest lower bounds diff -r eb7e62c0f53c -r a562ca0c408d src/HOL/Library/Glbs.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Glbs.thy Mon Feb 09 16:19:46 2009 +0000 @@ -0,0 +1,85 @@ +(* Title: Glbs + ID: $Id: + Author: Amine Chaieb, University of Cambridge +*) + +header{*Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs*} + +theory Glbs +imports Lubs +begin + +definition + greatestP :: "['a =>bool,'a::ord] => bool" where + "greatestP P x = (P x & Collect P *<= x)" + +definition + isLb :: "['a set, 'a set, 'a::ord] => bool" where + "isLb R S x = (x <=* S & x: R)" + +definition + isGlb :: "['a set, 'a set, 'a::ord] => bool" where + "isGlb R S x = greatestP (isLb R S) x" + +definition + lbs :: "['a set, 'a::ord set] => 'a set" where + "lbs R S = Collect (isLb R S)" + +subsection{*Rules about the Operators @{term greatestP}, @{term isLb} + and @{term isGlb}*} + +lemma leastPD1: "greatestP P x ==> P x" +by (simp add: greatestP_def) + +lemma greatestPD2: "greatestP P x ==> Collect P *<= x" +by (simp add: greatestP_def) + +lemma greatestPD3: "[| greatestP P x; y: Collect P |] ==> x >= y" +by (blast dest!: greatestPD2 setleD) + +lemma isGlbD1: "isGlb R S x ==> x <=* S" +by (simp add: isGlb_def isLb_def greatestP_def) + +lemma isGlbD1a: "isGlb R S x ==> x: R" +by (simp add: isGlb_def isLb_def greatestP_def) + +lemma isGlb_isLb: "isGlb R S x ==> isLb R S x" +apply (simp add: isLb_def) +apply (blast dest: isGlbD1 isGlbD1a) +done + +lemma isGlbD2: "[| isGlb R S x; y : S |] ==> y >= x" +by (blast dest!: isGlbD1 setgeD) + +lemma isGlbD3: "isGlb R S x ==> greatestP(isLb R S) x" +by (simp add: isGlb_def) + +lemma isGlbI1: "greatestP(isLb R S) x ==> isGlb R S x" +by (simp add: isGlb_def) + +lemma isGlbI2: "[| isLb R S x; Collect (isLb R S) *<= x |] ==> isGlb R S x" +by (simp add: isGlb_def greatestP_def) + +lemma isLbD: "[| isLb R S x; y : S |] ==> y >= x" +by (simp add: isLb_def setge_def) + +lemma isLbD2: "isLb R S x ==> x <=* S " +by (simp add: isLb_def) + +lemma isLbD2a: "isLb R S x ==> x: R" +by (simp add: isLb_def) + +lemma isLbI: "[| x <=* S ; x: R |] ==> isLb R S x" +by (simp add: isLb_def) + +lemma isGlb_le_isLb: "[| isGlb R S x; isLb R S y |] ==> x >= y" +apply (simp add: isGlb_def) +apply (blast intro!: greatestPD3) +done + +lemma isGlb_ubs: "isGlb R S x ==> lbs R S *<= x" +apply (simp add: lbs_def isGlb_def) +apply (erule greatestPD2) +done + +end