# HG changeset patch # User nipkow # Date 1546345597 -3600 # Node ID a59f7d07bf1748638c22533801b27430788c489d # Parent 8fd576a99a5949839b92ba668abb9da7cb58b943 tuned defs diff -r 8fd576a99a59 -r a59f7d07bf17 src/HOL/Analysis/Elementary_Topology.thy --- a/src/HOL/Analysis/Elementary_Topology.thy Mon Dec 31 22:21:34 2018 +0100 +++ b/src/HOL/Analysis/Elementary_Topology.thy Tue Jan 01 13:26:37 2019 +0100 @@ -687,7 +687,8 @@ subsection \Interior of a Set\ -definition%important "interior S = \{T. open T \ T \ S}" +definition%important interior :: "('a::topological_space) set \ 'a set" where +"interior S = \{T. open T \ T \ S}" lemma interiorI [intro?]: assumes "open T" and "x \ T" and "T \ S" @@ -851,7 +852,8 @@ subsection \Closure of a Set\ -definition%important "closure S = S \ {x | x. x islimpt S}" +definition%important closure :: "('a::topological_space) set \ 'a set" where +"closure S = S \ {x . x islimpt S}" lemma interior_closure: "interior S = - (closure (- S))" by (auto simp: interior_def closure_def islimpt_def) @@ -980,7 +982,8 @@ subsection \Frontier (also known as boundary)\ -definition%important "frontier S = closure S - interior S" +definition%important frontier :: "('a::topological_space) set \ 'a set" where +"frontier S = closure S - interior S" lemma frontier_closed [iff]: "closed (frontier S)" by (simp add: frontier_def closed_Diff) @@ -1630,8 +1633,10 @@ with \U \ \A = {}\ show False by auto qed -definition%important "countably_compact U \ - (\A. countable A \ (\a\A. open a) \ U \ \A \ (\T\A. finite T \ U \ \T))" +definition%important countably_compact :: "('a::topological_space) set \ bool" where +"countably_compact U \ + (\A. countable A \ (\a\A. open a) \ U \ \A + \ (\T\A. finite T \ U \ \T))" lemma countably_compactE: assumes "countably_compact s" and "\t\C. open t" and "s \ \C" "countable C" @@ -1698,9 +1703,10 @@ subsubsection\Sequential compactness\ -definition%important seq_compact :: "'a::topological_space set \ bool" - where "seq_compact S \ - (\f. (\n. f n \ S) \ (\l\S. \r::nat\nat. strict_mono r \ ((f \ r) \ l) sequentially))" +definition%important seq_compact :: "'a::topological_space set \ bool" where +"seq_compact S \ + (\f. (\n. f n \ S) + \ (\l\S. \r::nat\nat. strict_mono r \ ((f \ r) \ l) sequentially))" lemma seq_compactI: assumes "\f. \n. f n \ S \ \l\S. \r::nat\nat. strict_mono r \ ((f \ r) \ l) sequentially" diff -r 8fd576a99a59 -r a59f7d07bf17 src/HOL/Analysis/Measure_Space.thy --- a/src/HOL/Analysis/Measure_Space.thy Mon Dec 31 22:21:34 2018 +0100 +++ b/src/HOL/Analysis/Measure_Space.thy Tue Jan 01 13:26:37 2019 +0100 @@ -1388,7 +1388,8 @@ subsection \Measure space induced by distribution of @{const measurable}-functions\ definition%important distr :: "'a measure \ 'b measure \ ('a \ 'b) \ 'b measure" where - "distr M N f = measure_of (space N) (sets N) (\A. emeasure M (f -` A \ space M))" +"distr M N f = + measure_of (space N) (sets N) (\A. emeasure M (f -` A \ space M))" lemma shows sets_distr[simp, measurable_cong]: "sets (distr M N f) = sets N" @@ -1708,9 +1709,8 @@ subsection \Set of measurable sets with finite measure\ -definition%important fmeasurable :: "'a measure \ 'a set set" -where - "fmeasurable M = {A\sets M. emeasure M A < \}" +definition%important fmeasurable :: "'a measure \ 'a set set" where +"fmeasurable M = {A\sets M. emeasure M A < \}" lemma fmeasurableD[dest, measurable_dest]: "A \ fmeasurable M \ A \ sets M" by (auto simp: fmeasurable_def) @@ -2605,7 +2605,8 @@ subsection%unimportant \Null measure\ -definition "null_measure M = sigma (space M) (sets M)" +definition null_measure :: "'a measure \ 'a measure" where +"null_measure M = sigma (space M) (sets M)" lemma space_null_measure[simp]: "space (null_measure M) = space M" by (simp add: null_measure_def) @@ -2626,9 +2627,8 @@ subsection \Scaling a measure\ -definition%important scale_measure :: "ennreal \ 'a measure \ 'a measure" -where - "scale_measure r M = measure_of (space M) (sets M) (\A. r * emeasure M A)" +definition%important scale_measure :: "ennreal \ 'a measure \ 'a measure" where +"scale_measure r M = measure_of (space M) (sets M) (\A. r * emeasure M A)" lemma space_scale_measure: "space (scale_measure r M) = space M" by (simp add: scale_measure_def) @@ -2874,9 +2874,10 @@ by (cases "X \ sets M") (auto simp: emeasure_notin_sets) done -definition%important sup_measure' :: "'a measure \ 'a measure \ 'a measure" -where - "sup_measure' A B = measure_of (space A) (sets A) (\X. SUP Y\sets A. emeasure A (X \ Y) + emeasure B (X \ - Y))" +definition%important sup_measure' :: "'a measure \ 'a measure \ 'a measure" where +"sup_measure' A B = + measure_of (space A) (sets A) + (\X. SUP Y\sets A. emeasure A (X \ Y) + emeasure B (X \ - Y))" lemma assumes [simp]: "sets B = sets A" shows space_sup_measure'[simp]: "space (sup_measure' A B) = space A" @@ -3002,10 +3003,11 @@ qed qed simp_all -definition%important sup_lexord :: "'a \ 'a \ ('a \ 'b::order) \ 'a \ 'a \ 'a" -where - "sup_lexord A B k s c = - (if k A = k B then c else if \ k A \ k B \ \ k B \ k A then s else if k B \ k A then A else B)" +definition%important sup_lexord :: "'a \ 'a \ ('a \ 'b::order) \ 'a \ 'a \ 'a" where +"sup_lexord A B k s c = + (if k A = k B then c else + if \ k A \ k B \ \ k B \ k A then s else + if k B \ k A then A else B)" lemma sup_lexord: "(k A < k B \ P B) \ (k B < k A \ P A) \ (k A = k B \ P c) \ @@ -3031,8 +3033,7 @@ instantiation measure :: (type) semilattice_sup begin -definition%important sup_measure :: "'a measure \ 'a measure \ 'a measure" -where +definition%important sup_measure :: "'a measure \ 'a measure \ 'a measure" where "sup_measure A B = sup_lexord A B space (sigma (space A \ space B) {}) (sup_lexord A B sets (sigma (space A) (sets A \ sets B)) (sup_measure' A B))" @@ -3135,9 +3136,12 @@ lemma UN_space_closed: "\(sets ` S) \ Pow (\(space ` S))" using sets.space_closed by auto -definition Sup_lexord :: "('a \ 'b::complete_lattice) \ ('a set \ 'a) \ ('a set \ 'a) \ 'a set \ 'a" +definition%important + Sup_lexord :: "('a \ 'b::complete_lattice) \ ('a set \ 'a) \ ('a set \ 'a) \ 'a set \ 'a" where - "Sup_lexord k c s A = (let U = (SUP a\A. k a) in if \a\A. k a = U then c {a\A. k a = U} else s A)" + "Sup_lexord k c s A = + (let U = (SUP a\A. k a) + in if \a\A. k a = U then c {a\A. k a = U} else s A)" lemma Sup_lexord: "(\a S. a \ A \ k a = (SUP a\A. k a) \ S = {a'\A. k a' = k a} \ P (c S)) \ ((\a. a \ A \ k a \ (SUP a\A. k a)) \ P (s A)) \ @@ -3194,9 +3198,9 @@ "finite I \ I \ {} \ (\i. i \ I \ sets i = sets M) \ sets (sup_measure.F id I) = sets M" by (induction I rule: finite_ne_induct) (simp_all add: sets_sup) -definition%important Sup_measure' :: "'a measure set \ 'a measure" -where - "Sup_measure' M = measure_of (\a\M. space a) (\a\M. sets a) +definition%important Sup_measure' :: "'a measure set \ 'a measure" where +"Sup_measure' M = + measure_of (\a\M. space a) (\a\M. sets a) (\X. (SUP P\{P. finite P \ P \ M }. sup_measure.F id P X))" lemma space_Sup_measure'2: "space (Sup_measure' M) = (\m\M. space m)" @@ -3265,21 +3269,20 @@ using assms * by auto qed (rule UN_space_closed) -definition%important Sup_measure :: "'a measure set \ 'a measure" -where - "Sup_measure = Sup_lexord space (Sup_lexord sets Sup_measure' - (\U. sigma (\u\U. space u) (\u\U. sets u))) (\U. sigma (\u\U. space u) {})" - -definition%important Inf_measure :: "'a measure set \ 'a measure" -where +definition%important Sup_measure :: "'a measure set \ 'a measure" where +"Sup_measure = + Sup_lexord space + (Sup_lexord sets Sup_measure' + (\U. sigma (\u\U. space u) (\u\U. sets u))) + (\U. sigma (\u\U. space u) {})" + +definition%important Inf_measure :: "'a measure set \ 'a measure" where "Inf_measure A = Sup {x. \a\A. x \ a}" -definition%important inf_measure :: "'a measure \ 'a measure \ 'a measure" -where +definition%important inf_measure :: "'a measure \ 'a measure \ 'a measure" where "inf_measure a b = Inf {a, b}" -definition%important top_measure :: "'a measure" -where +definition%important top_measure :: "'a measure" where "top_measure = Inf {}" instance