# HG changeset patch # User nipkow # Date 1523283623 -7200 # Node ID a5ad4c015d1c74b446e94819d4276d693036fe61 # Parent 5a4280946a256bf30da3d37804e6411846033f01 removed dots at the end of (sub)titles diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Arcwise_Connected.thy --- a/src/HOL/Analysis/Arcwise_Connected.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Arcwise_Connected.thy Mon Apr 09 16:20:23 2018 +0200 @@ -109,7 +109,7 @@ subsection\Arcwise Connections\ -subsection\Density of points with dyadic rational coordinates.\ +subsection\Density of points with dyadic rational coordinates\ proposition closure_dyadic_rationals: "closure (\k. \f \ Basis \ \. diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Mon Apr 09 16:20:23 2018 +0200 @@ -16,7 +16,7 @@ (* (c) Copyright, John Harrison 1998-2008 *) (* ========================================================================= *) -section \Results connected with topological dimension.\ +section \Results connected with topological dimension\ theory Brouwer_Fixpoint imports Path_Connected Homeomorphism @@ -117,7 +117,7 @@ qed -subsection \The key "counting" observation, somewhat abstracted.\ +subsection \The key "counting" observation, somewhat abstracted\ lemma kuhn_counting_lemma: fixes bnd compo compo' face S F @@ -148,7 +148,7 @@ by auto qed -subsection \The odd/even result for faces of complete vertices, generalized.\ +subsection \The odd/even result for faces of complete vertices, generalized\ lemma kuhn_complete_lemma: assumes [simp]: "finite simplices" @@ -2367,7 +2367,7 @@ qed -subsection\Punctured affine hulls, etc.\ +subsection\Punctured affine hulls, etc\ lemma continuous_on_compact_surface_projection_aux: fixes S :: "'a::t2_space set" @@ -2716,7 +2716,7 @@ by blast qed -subsection\Absolute retracts, Etc.\ +subsection\Absolute retracts, etc\ text\Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also Euclidean neighbourhood retracts (ENR). We define AR and ANR by @@ -3110,7 +3110,7 @@ shows "S homeomorphic T \ ANR S \ ANR T" by (metis ANR_homeomorphic_ANR homeomorphic_sym) -subsection\ Analogous properties of ENRs.\ +subsection\ Analogous properties of ENRs\ proposition ENR_imp_absolute_neighbourhood_retract: fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set" @@ -4274,7 +4274,7 @@ shows "ANR c" by (metis ANR_connected_component_ANR assms componentsE) -subsection\Original ANR material, now for ENRs.\ +subsection\Original ANR material, now for ENRs\ lemma ENR_bounded: fixes S :: "'a::euclidean_space set" @@ -4438,7 +4438,7 @@ by (simp add: ENR_imp_ANR ENR_sphere) -subsection\Spheres are connected, etc.\ +subsection\Spheres are connected, etc\ lemma locally_path_connected_sphere_gen: fixes S :: "'a::euclidean_space set" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Mon Apr 09 16:20:23 2018 +0200 @@ -1,4 +1,4 @@ -section \Instantiates the finite Cartesian product of Euclidean spaces as a Euclidean space.\ +section \Instantiates the finite Cartesian product of Euclidean spaces as a Euclidean space\ theory Cartesian_Euclidean_Space imports Finite_Cartesian_Product Derivative @@ -21,7 +21,7 @@ qed simp qed simp -subsection\Basic componentwise operations on vectors.\ +subsection\Basic componentwise operations on vectors\ instantiation vec :: (times, finite) times begin @@ -93,7 +93,7 @@ where "c *s x = (\ i. c * (x$i))" -subsection \A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space.\ +subsection \A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space\ lemma sum_cong_aux: "(\x. x \ A \ f x = g x) \ sum f A = sum g A" @@ -170,7 +170,7 @@ vector_scaleR_component cond_component -subsection \Some frequently useful arithmetic lemmas over vectors.\ +subsection \Some frequently useful arithmetic lemmas over vectors\ instance vec :: (semigroup_mult, finite) semigroup_mult by standard (vector mult.assoc) @@ -719,7 +719,7 @@ done -subsection\Some bounds on components etc. relative to operator norm.\ +subsection\Some bounds on components etc. relative to operator norm\ lemma norm_column_le_onorm: fixes A :: "real^'n^'m" @@ -1416,7 +1416,7 @@ subsection \Component of the differential must be zero if it exists at a local - maximum or minimum for that corresponding component.\ + maximum or minimum for that corresponding component\ lemma differential_zero_maxmin_cart: fixes f::"real^'a \ real^'b" @@ -1489,7 +1489,7 @@ end -subsection\The collapse of the general concepts to dimension one.\ +subsection\The collapse of the general concepts to dimension one\ lemma vector_one: "(x::'a ^1) = (\ i. (x$1))" by (simp add: vec_eq_iff) @@ -1510,7 +1510,7 @@ by (auto simp add: norm_real dist_norm) -subsection\Explicit vector construction from lists.\ +subsection\Explicit vector construction from lists\ definition "vector l = (\ i. foldr (\x f n. fun_upd (f (n+1)) n x) l (\n x. 0) 1 i)" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Cauchy_Integral_Theorem.thy --- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Mon Apr 09 16:20:23 2018 +0200 @@ -3550,7 +3550,7 @@ apply (force simp: algebra_simps) done -subsubsection\Some lemmas about negating a path.\ +subsubsection\Some lemmas about negating a path\ lemma valid_path_negatepath: "valid_path \ \ valid_path (uminus \ \)" unfolding o_def using piecewise_C1_differentiable_neg valid_path_def by blast @@ -3965,7 +3965,7 @@ qed -subsection\Continuity of winding number and invariance on connected sets.\ +subsection\Continuity of winding number and invariance on connected sets\ lemma continuous_at_winding_number: fixes z::complex @@ -4436,7 +4436,7 @@ qed -subsection\Cauchy's integral formula, again for a convex enclosing set.\ +subsection\Cauchy's integral formula, again for a convex enclosing set\ lemma Cauchy_integral_formula_weak: assumes s: "convex s" and "finite k" and conf: "continuous_on s f" @@ -5374,7 +5374,7 @@ using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: contour_integral_uniform_limit) -subsection\ General stepping result for derivative formulas.\ +subsection\ General stepping result for derivative formulas\ proposition Cauchy_next_derivative: assumes "continuous_on (path_image \) f'" @@ -5614,7 +5614,7 @@ by simp (rule fder) qed -subsection\ Existence of all higher derivatives.\ +subsection\Existence of all higher derivatives\ proposition derivative_is_holomorphic: assumes "open s" @@ -5699,7 +5699,7 @@ qed -subsection\ Morera's theorem.\ +subsection\Morera's theorem\ lemma Morera_local_triangle_ball: assumes "\z. z \ s @@ -5783,7 +5783,7 @@ -subsection\ Combining theorems for higher derivatives including Leibniz rule.\ +subsection\Combining theorems for higher derivatives including Leibniz rule\ lemma higher_deriv_linear [simp]: "(deriv ^^ n) (\w. c*w) = (\z. if n = 0 then c*z else if n = 1 then c else 0)" @@ -6139,7 +6139,7 @@ by (simp add: power2_eq_square) -subsection\A holomorphic function is analytic, i.e. has local power series.\ +subsection\A holomorphic function is analytic, i.e. has local power series\ theorem holomorphic_power_series: assumes holf: "f holomorphic_on ball z r" @@ -6255,7 +6255,7 @@ qed -subsection\The Liouville theorem and the Fundamental Theorem of Algebra.\ +subsection\The Liouville theorem and the Fundamental Theorem of Algebra\ text\ These weak Liouville versions don't even need the derivative formula.\ @@ -6343,7 +6343,7 @@ qed -subsection\ Weierstrass convergence theorem.\ +subsection\Weierstrass convergence theorem\ proposition holomorphic_uniform_limit: assumes cont: "eventually (\n. continuous_on (cball z r) (f n) \ (f n) holomorphic_on ball z r) F" @@ -6490,7 +6490,7 @@ qed -subsection\Some more simple/convenient versions for applications.\ +subsection\Some more simple/convenient versions for applications\ lemma holomorphic_uniform_sequence: assumes S: "open S" @@ -6548,7 +6548,7 @@ qed -subsection\On analytic functions defined by a series.\ +subsection\On analytic functions defined by a series\ lemma series_and_derivative_comparison: fixes S :: "complex set" @@ -6767,7 +6767,7 @@ by (simp add: analytic_on_open holomorphic_iff_power_series) -subsection\Equality between holomorphic functions, on open ball then connected set.\ +subsection\Equality between holomorphic functions, on open ball then connected set\ lemma holomorphic_fun_eq_on_ball: "\f holomorphic_on ball z r; g holomorphic_on ball z r; @@ -6846,7 +6846,7 @@ done -subsection\Some basic lemmas about poles/singularities.\ +subsection\Some basic lemmas about poles/singularities\ lemma pole_lemma: assumes holf: "f holomorphic_on s" and a: "a \ interior s" @@ -7002,7 +7002,7 @@ qed -subsection\General, homology form of Cauchy's theorem.\ +subsection\General, homology form of Cauchy's theorem\ text\Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Mon Apr 09 16:20:23 2018 +0200 @@ -174,7 +174,7 @@ "(\x. DERIV f x :> 0) \ f x = f a" by (metis DERIV_zero_unique UNIV_I convex_UNIV) -subsection \Some limit theorems about real part of real series etc.\ +subsection \Some limit theorems about real part of real series etc\ (*MOVE? But not to Finite_Cartesian_Product*) lemma sums_vec_nth : diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Complex_Transcendental.thy --- a/src/HOL/Analysis/Complex_Transcendental.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Complex_Transcendental.thy Mon Apr 09 16:20:23 2018 +0200 @@ -77,7 +77,7 @@ "f holomorphic_on s \ (\x. exp (f x)) holomorphic_on s" using holomorphic_on_compose[OF _ holomorphic_on_exp] by (simp add: o_def) -subsection\Euler and de Moivre formulas.\ +subsection\Euler and de Moivre formulas\ text\The sine series times @{term i}\ lemma sin_i_eq: "(\n. (\ * sin_coeff n) * z^n) sums (\ * sin z)" @@ -176,7 +176,7 @@ lemma holomorphic_on_cos: "cos holomorphic_on s" by (simp add: field_differentiable_within_cos holomorphic_on_def) -subsection\Get a nice real/imaginary separation in Euler's formula.\ +subsection\Get a nice real/imaginary separation in Euler's formula\ lemma Euler: "exp(z) = of_real(exp(Re z)) * (of_real(cos(Im z)) + \ * of_real(sin(Im z)))" @@ -626,7 +626,7 @@ qed -subsection\Taylor series for complex exponential, sine and cosine.\ +subsection\Taylor series for complex exponential, sine and cosine\ declare power_Suc [simp del] @@ -3503,7 +3503,7 @@ lemma of_real_arccos: "\x\ \ 1 \ of_real(arccos x) = Arccos(of_real x)" by (metis Im_Arccos_of_real add.right_neutral arccos_eq_Re_Arccos complex_eq mult_zero_right of_real_0) -subsection\Some interrelationships among the real inverse trig functions.\ +subsection\Some interrelationships among the real inverse trig functions\ lemma arccos_arctan: assumes "-1 < x" "x < 1" @@ -3573,7 +3573,7 @@ using arccos_arcsin_sqrt_pos [of "-x"] by (simp add: arccos_minus) -subsection\continuity results for arcsin and arccos.\ +subsection\Continuity results for arcsin and arccos\ lemma continuous_on_Arcsin_real [continuous_intros]: "continuous_on {w \ \. \Re w\ \ 1} Arcsin" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Conformal_Mappings.thy --- a/src/HOL/Analysis/Conformal_Mappings.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Conformal_Mappings.thy Mon Apr 09 16:20:23 2018 +0200 @@ -1,4 +1,4 @@ -section \Conformal Mappings. Consequences of Cauchy's integral theorem.\ +section \Conformal Mappings and Consequences of Cauchy's integral theorem\ text\By John Harrison et al. Ported from HOL Light by L C Paulson (2016)\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Connected.thy Mon Apr 09 16:20:23 2018 +0200 @@ -2,13 +2,13 @@ Material split off from Topology_Euclidean_Space *) -section \Connected Components, Homeomorphisms, Baire property, etc.\ +section \Connected Components, Homeomorphisms, Baire property, etc\ theory Connected imports Topology_Euclidean_Space begin -subsection%unimportant \More properties of closed balls, spheres, etc.\ +subsection%unimportant \More properties of closed balls, spheres, etc\ lemma mem_interior_cball: "x \ interior S \ (\e>0. cball x e \ S)" apply (simp add: interior_def, safe) @@ -961,7 +961,7 @@ qed qed -subsection%unimportant \Some theorems on sups and infs using the notion "bounded".\ +subsection%unimportant \Some theorems on sups and infs using the notion "bounded"\ lemma bounded_real: "bounded (S::real set) \ (\a. \x\S. \x\ \ a)" by (simp add: bounded_iff) @@ -1139,7 +1139,7 @@ qed -subsection%unimportant\Relations among convergence and absolute convergence for power series.\ +subsection%unimportant\Relations among convergence and absolute convergence for power series\ lemma summable_imp_bounded: fixes f :: "nat \ 'a::real_normed_vector" @@ -1515,7 +1515,7 @@ by (simp add: compact_eq_bounded_closed) qed -subsection%unimportant \Equality of continuous functions on closure and related results.\ +subsection%unimportant \Equality of continuous functions on closure and related results\ lemma continuous_closedin_preimage_constant: fixes f :: "_ \ 'b::t1_space" @@ -2047,7 +2047,7 @@ shows "bounded(f ` S)" by (metis (no_types, lifting) assms bounded_closure_image compact_closure compact_continuous_image compact_eq_bounded_closed image_cong uniformly_continuous_imp_continuous uniformly_continuous_on_extension_on_closure) -subsection%unimportant \Making a continuous function avoid some value in a neighbourhood.\ +subsection%unimportant \Making a continuous function avoid some value in a neighbourhood\ lemma continuous_within_avoid: fixes f :: "'a::metric_space \ 'b::t1_space" @@ -2363,7 +2363,7 @@ unfolding mem_interior using \e > 0\ by auto qed -subsection \Continuity implies uniform continuity on a compact domain.\ +subsection \Continuity implies uniform continuity on a compact domain\ text\From the proof of the Heine-Borel theorem: Lemma 2 in section 3.7, page 69 of J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)\ @@ -2666,7 +2666,7 @@ qed -subsection \The diameter of a set.\ +subsection \The diameter of a set\ definition%important diameter :: "'a::metric_space set \ real" where "diameter S = (if S = {} then 0 else SUP (x,y):S\S. dist x y)" @@ -3014,7 +3014,7 @@ qed -subsection%unimportant \Compact sets and the closure operation.\ +subsection%unimportant \Compact sets and the closure operation\ lemma closed_scaling: fixes S :: "'a::real_normed_vector set" @@ -3321,7 +3321,7 @@ using assms by (auto simp: continuous_on_id intro: continuous_on_cases_le [where h = id, simplified]) -subsubsection\Some more convenient intermediate-value theorem formulations.\ +subsubsection\Some more convenient intermediate-value theorem formulations\ lemma connected_ivt_hyperplane: assumes "connected S" and xy: "x \ S" "y \ S" and b: "inner a x \ b" "b \ inner a y" @@ -3901,7 +3901,7 @@ qed -subsection \"Isometry" (up to constant bounds) of injective linear map etc.\ +subsection \"Isometry" (up to constant bounds) of injective linear map etc\ lemma cauchy_isometric: assumes e: "e > 0" @@ -4976,7 +4976,7 @@ -subsection\A couple of lemmas about components (see Newman IV, 3.3 and 3.4).\ +subsection\A couple of lemmas about components (see Newman IV, 3.3 and 3.4)\ lemma connected_Un_clopen_in_complement: diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Continuous_Extension.thy --- a/src/HOL/Analysis/Continuous_Extension.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Continuous_Extension.thy Mon Apr 09 16:20:23 2018 +0200 @@ -295,7 +295,7 @@ using%unimportant assms by (auto intro: Urysohn_local [of UNIV S T a b]) -subsection\ The Dugundji extension theorem, and Tietze variants as corollaries.\ +subsection\The Dugundji extension theorem and Tietze variants as corollaries\ text%important\J. Dugundji. An extension of Tietze's theorem. Pacific J. Math. Volume 1, Number 3 (1951), 353-367. http://projecteuclid.org/euclid.pjm/1103052106\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Continuum_Not_Denumerable.thy --- a/src/HOL/Analysis/Continuum_Not_Denumerable.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Continuum_Not_Denumerable.thy Mon Apr 09 16:20:23 2018 +0200 @@ -3,7 +3,7 @@ Author: Johannes Hölzl, TU München *) -section \Non-denumerability of the Continuum.\ +section \Non-denumerability of the Continuum\ theory Continuum_Not_Denumerable imports diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Analysis/Convex_Euclidean_Space.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Convex_Euclidean_Space.thy Mon Apr 09 16:20:23 2018 +0200 @@ -4283,7 +4283,7 @@ by (metis low_dim_interior) -subsection \Caratheodory's theorem.\ +subsection \Caratheodory's theorem\ lemma convex_hull_caratheodory_aff_dim: fixes p :: "('a::euclidean_space) set" @@ -5151,7 +5151,7 @@ by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset) -subsection%unimportant \Openness and compactness are preserved by convex hull operation.\ +subsection%unimportant \Openness and compactness are preserved by convex hull operation\ lemma open_convex_hull[intro]: fixes s :: "'a::real_normed_vector set" @@ -5422,7 +5422,7 @@ qed -subsection%unimportant \Extremal points of a simplex are some vertices.\ +subsection%unimportant \Extremal points of a simplex are some vertices\ lemma dist_increases_online: fixes a b d :: "'a::real_inner" @@ -5621,7 +5621,7 @@ by(cases "s = {}") auto -subsection \Closest point of a convex set is unique, with a continuous projection.\ +subsection \Closest point of a convex set is unique, with a continuous projection\ definition%important closest_point :: "'a::{real_inner,heine_borel} set \ 'a \ 'a" where "closest_point s a = (SOME x. x \ s \ (\y\s. dist a x \ dist a y))" @@ -5811,7 +5811,7 @@ qed -subsubsection%unimportant \Various point-to-set separating/supporting hyperplane theorems.\ +subsubsection%unimportant \Various point-to-set separating/supporting hyperplane theorems\ lemma supporting_hyperplane_closed_point: fixes z :: "'a::{real_inner,heine_borel}" @@ -6132,7 +6132,7 @@ using hull_subset[of s convex] convex_hull_empty by auto -subsection%unimportant \Moving and scaling convex hulls.\ +subsection%unimportant \Moving and scaling convex hulls\ lemma convex_hull_set_plus: "convex hull (s + t) = convex hull s + convex hull t" @@ -6657,7 +6657,7 @@ "\connected S; aff_dim S \ 0; a \ S\ \ a islimpt S" using aff_dim_sing connected_imp_perfect by blast -subsection%unimportant \On \real\, \is_interval\, \convex\ and \connected\ are all equivalent.\ +subsection%unimportant \On \real\, \is_interval\, \convex\ and \connected\ are all equivalent\ lemma mem_is_interval_1_I: fixes a b c::real diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Derivative.thy --- a/src/HOL/Analysis/Derivative.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Derivative.thy Mon Apr 09 16:20:23 2018 +0200 @@ -15,7 +15,7 @@ subsection \Derivatives\ -subsubsection \Combining theorems.\ +subsubsection \Combining theorems\ lemmas has_derivative_id = has_derivative_ident lemmas has_derivative_neg = has_derivative_minus @@ -32,7 +32,7 @@ by (intro derivative_eq_intros) auto -subsection \Derivative with composed bilinear function.\ +subsection \Derivative with composed bilinear function\ lemma has_derivative_bilinear_within: assumes "(f has_derivative f') (at x within s)" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Determinants.thy --- a/src/HOL/Analysis/Determinants.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Determinants.thy Mon Apr 09 16:20:23 2018 +0200 @@ -929,7 +929,7 @@ by auto qed -subsection \Orthogonality of a transformation and matrix.\ +subsection \Orthogonality of a transformation and matrix\ definition "orthogonal_transformation f \ linear f \ (\v w. f v \ f w = v \ w)" @@ -1087,7 +1087,7 @@ using det_orthogonal_matrix orthogonal_transformation_matrix by fastforce -subsection \Linearity of scaling, and hence isometry, that preserves origin.\ +subsection \Linearity of scaling, and hence isometry, that preserves origin\ lemma scaling_linear: fixes f :: "'a::real_inner \ 'a::real_inner" @@ -1157,7 +1157,7 @@ by (auto simp: orthogonal_transformation_isometry) qed -subsection\ We can find an orthogonal matrix taking any unit vector to any other.\ +subsection\ We can find an orthogonal matrix taking any unit vector to any other\ lemma orthogonal_matrix_transpose [simp]: "orthogonal_matrix(transpose A) \ orthogonal_matrix A" @@ -1251,7 +1251,7 @@ qed -subsection \Can extend an isometry from unit sphere.\ +subsection \Can extend an isometry from unit sphere\ lemma isometry_sphere_extend: fixes f:: "'a::real_inner \ 'a" @@ -1349,7 +1349,7 @@ done qed -subsection \Rotation, reflection, rotoinversion.\ +subsection \Rotation, reflection, rotoinversion\ definition "rotation_matrix Q \ orthogonal_matrix Q \ det Q = 1" definition "rotoinversion_matrix Q \ orthogonal_matrix Q \ det Q = - 1" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Fashoda_Theorem.thy --- a/src/HOL/Analysis/Fashoda_Theorem.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Fashoda_Theorem.thy Mon Apr 09 16:20:23 2018 +0200 @@ -8,7 +8,7 @@ imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space begin -subsection \Bijections between intervals.\ +subsection \Bijections between intervals\ definition interval_bij :: "'a \ 'a \ 'a \ 'a \ 'a \ 'a::euclidean_space" where "interval_bij = diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Finite_Cartesian_Product.thy --- a/src/HOL/Analysis/Finite_Cartesian_Product.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Finite_Cartesian_Product.thy Mon Apr 09 16:20:23 2018 +0200 @@ -2,7 +2,7 @@ Author: Amine Chaieb, University of Cambridge *) -section \Definition of finite Cartesian product types.\ +section \Definition of finite Cartesian product types\ theory Finite_Cartesian_Product imports @@ -13,7 +13,7 @@ "HOL-Library.FuncSet" begin -subsection \Finite Cartesian products, with indexing and lambdas.\ +subsection \Finite Cartesian products, with indexing and lambdas\ typedef ('a, 'b) vec = "UNIV :: ('b::finite \ 'a) set" morphisms vec_nth vec_lambda .. diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Further_Topology.thy --- a/src/HOL/Analysis/Further_Topology.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Further_Topology.thy Mon Apr 09 16:20:23 2018 +0200 @@ -1,4 +1,4 @@ -section \Extending Continous Maps, Invariance of Domain, etc..\ +section \Extending Continous Maps, Invariance of Domain, etc\ text\Ported from HOL Light (moretop.ml) by L C Paulson\ @@ -367,7 +367,7 @@ -subsection\ Some technical lemmas about extending maps from cell complexes.\ +subsection\ Some technical lemmas about extending maps from cell complexes\ lemma extending_maps_Union_aux: assumes fin: "finite \" @@ -981,7 +981,7 @@ -subsection\ Special cases and corollaries involving spheres.\ +subsection\ Special cases and corollaries involving spheres\ lemma disjnt_Diff1: "X \ Y' \ disjnt (X - Y) (X' - Y')" by (auto simp: disjnt_def) @@ -2727,7 +2727,7 @@ using clopen [of S] False by simp qed -subsection\ Dimension-based conditions for various homeomorphisms.\ +subsection\Dimension-based conditions for various homeomorphisms\ lemma homeomorphic_subspaces_eq: fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" @@ -3896,7 +3896,7 @@ qed -subsection\Another simple case where sphere maps are nullhomotopic.\ +subsection\Another simple case where sphere maps are nullhomotopic\ lemma inessential_spheremap_2_aux: fixes f :: "'a::euclidean_space \ complex" @@ -3962,7 +3962,7 @@ qed -subsection\Holomorphic logarithms and square roots.\ +subsection\Holomorphic logarithms and square roots\ lemma contractible_imp_holomorphic_log: assumes holf: "f holomorphic_on S" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Henstock_Kurzweil_Integration.thy --- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Mon Apr 09 16:20:23 2018 +0200 @@ -3,7 +3,7 @@ Huge cleanup by LCP *) -section \Henstock-Kurzweil gauge integration in many dimensions.\ +section \Henstock-Kurzweil gauge integration in many dimensions\ theory Henstock_Kurzweil_Integration imports @@ -28,7 +28,7 @@ by blast (* END MOVE *) -subsection \Content (length, area, volume...) of an interval.\ +subsection \Content (length, area, volume...) of an interval\ abbreviation content :: "'a::euclidean_space set \ real" where "content s \ measure lborel s" @@ -313,7 +313,7 @@ lemma has_integral_integral: "f integrable_on s \ (f has_integral (integral s f)) s" by auto -subsection \Basic theorems about integrals.\ +subsection \Basic theorems about integrals\ lemma has_integral_eq_rhs: "(f has_integral j) S \ i = j \ (f has_integral i) S" by (rule forw_subst) @@ -909,7 +909,7 @@ -subsection \Cauchy-type criterion for integrability.\ +subsection \Cauchy-type criterion for integrability\ proposition integrable_Cauchy: fixes f :: "'n::euclidean_space \ 'a::{real_normed_vector,complete_space}" @@ -1012,7 +1012,7 @@ qed -subsection \Additivity of integral on abutting intervals.\ +subsection \Additivity of integral on abutting intervals\ lemma tagged_division_split_left_inj_content: assumes \: "\ tagged_division_of S" @@ -1261,7 +1261,7 @@ qed -subsection \A sort of converse, integrability on subintervals.\ +subsection \A sort of converse, integrability on subintervals\ lemma has_integral_separate_sides: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" @@ -1459,7 +1459,7 @@ qed qed -subsection \Bounds on the norm of Riemann sums and the integral itself.\ +subsection \Bounds on the norm of Riemann sums and the integral itself\ lemma dsum_bound: assumes "p division_of (cbox a b)" @@ -1562,7 +1562,7 @@ by (metis integrable_integral has_integral_bound assms) -subsection \Similar theorems about relationship among components.\ +subsection \Similar theorems about relationship among components\ lemma rsum_component_le: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" @@ -1764,7 +1764,7 @@ using assms by (metis box_real(2) integral_component_ubound) -subsection \Uniform limit of integrable functions is integrable.\ +subsection \Uniform limit of integrable functions is integrable\ lemma real_arch_invD: "0 < (e::real) \ (\n::nat. n \ 0 \ 0 < inverse (real n) \ inverse (real n) < e)" @@ -1907,13 +1907,13 @@ lemmas integrable_uniform_limit_real = integrable_uniform_limit [where 'a=real, simplified] -subsection \Negligible sets.\ +subsection \Negligible sets\ definition "negligible (s:: 'a::euclidean_space set) \ (\a b. ((indicator s :: 'a\real) has_integral 0) (cbox a b))" -subsubsection \Negligibility of hyperplane.\ +subsubsection \Negligibility of hyperplane\ lemma content_doublesplit: fixes a :: "'a::euclidean_space" @@ -2082,7 +2082,7 @@ qed -subsubsection \Hence the main theorem about negligible sets.\ +subsubsection \Hence the main theorem about negligible sets\ lemma has_integral_negligible_cbox: @@ -2276,7 +2276,7 @@ by (auto simp: integral_def integrable_on_def) -subsection \Some other trivialities about negligible sets.\ +subsection \Some other trivialities about negligible sets\ lemma negligible_subset: assumes "negligible s" "t \ s" @@ -2366,7 +2366,7 @@ qed auto -subsection \Finite case of the spike theorem is quite commonly needed.\ +subsection \Finite case of the spike theorem is quite commonly needed\ lemma has_integral_spike_finite: assumes "finite S" @@ -2414,7 +2414,7 @@ by (metis assms box_real(2) has_integral_bound_spike_finite) -subsection \In particular, the boundary of an interval is negligible.\ +subsection \In particular, the boundary of an interval is negligible\ lemma negligible_frontier_interval: "negligible(cbox (a::'a::euclidean_space) b - box a b)" proof - @@ -2445,7 +2445,7 @@ using assms has_integral_spike_interior_eq by blast -subsection \Integrability of continuous functions.\ +subsection \Integrability of continuous functions\ lemma operative_approximableI: fixes f :: "'b::euclidean_space \ 'a::banach" @@ -2573,10 +2573,10 @@ by (auto intro!: integrable_continuous_interval simp: closed_segment_eq_real_ivl) -subsection \Specialization of additivity to one dimension.\ - - -subsection \A useful lemma allowing us to factor out the content size.\ +subsection \Specialization of additivity to one dimension\ + + +subsection \A useful lemma allowing us to factor out the content size\ lemma has_integral_factor_content: "(f has_integral i) (cbox a b) \ @@ -2642,7 +2642,7 @@ by (rule has_integral_factor_content) -subsection \Fundamental theorem of calculus.\ +subsection \Fundamental theorem of calculus\ lemma interval_bounds_real: fixes q b :: real @@ -2884,7 +2884,7 @@ qed -subsection \Only need trivial subintervals if the interval itself is trivial.\ +subsection \Only need trivial subintervals if the interval itself is trivial\ proposition division_of_nontrivial: fixes \ :: "'a::euclidean_space set set" @@ -2970,7 +2970,7 @@ qed -subsection \Integrability on subintervals.\ +subsection \Integrability on subintervals\ lemma operative_integrableI: fixes f :: "'b::euclidean_space \ 'a::banach" @@ -3016,7 +3016,7 @@ shows "f integrable_on {c..d}" by (metis assms box_real(2) integrable_subinterval) -subsection \Combining adjacent intervals in 1 dimension.\ +subsection \Combining adjacent intervals in 1 dimension\ lemma has_integral_combine: fixes a b c :: real and j :: "'a::banach" @@ -3087,7 +3087,7 @@ using integral_combine[of b a c f] integral_combine[of a b c f] by (auto simp: algebra_simps min_def) -subsection \Reduce integrability to "local" integrability.\ +subsection \Reduce integrability to "local" integrability\ lemma integrable_on_little_subintervals: fixes f :: "'b::euclidean_space \ 'a::banach" @@ -3116,7 +3116,7 @@ qed -subsection \Second FTC or existence of antiderivative.\ +subsection \Second FTC or existence of antiderivative\ lemma integrable_const[intro]: "(\x. c) integrable_on cbox a b" unfolding integrable_on_def by blast @@ -3204,7 +3204,7 @@ obtains g where "\x. x \ {a..b} \ (g has_vector_derivative (f x::_::banach)) (at x within {a..b})" using integral_has_vector_derivative[OF assms] by auto -subsection \Combined fundamental theorem of calculus.\ +subsection \Combined fundamental theorem of calculus\ lemma antiderivative_integral_continuous: fixes f :: "real \ 'a::banach" @@ -3227,7 +3227,7 @@ qed -subsection \General "twiddling" for interval-to-interval function image.\ +subsection \General "twiddling" for interval-to-interval function image\ lemma has_integral_twiddle: assumes "0 < r" @@ -3334,7 +3334,7 @@ qed -subsection \Special case of a basic affine transformation.\ +subsection \Special case of a basic affine transformation\ lemma AE_lborel_inner_neq: assumes k: "k \ Basis" @@ -3460,7 +3460,7 @@ lemmas has_integral_affinity01 = has_integral_affinity [of _ _ 0 "1::real", simplified] -subsection \Special case of stretching coordinate axes separately.\ +subsection \Special case of stretching coordinate axes separately\ lemma has_integral_stretch: fixes f :: "'a::euclidean_space \ 'b::real_normed_vector" @@ -3485,7 +3485,7 @@ by (force dest: has_integral_stretch) -subsection \even more special cases.\ +subsection \even more special cases\ lemma uminus_interval_vector[simp]: fixes a b :: "'a::euclidean_space" @@ -3528,7 +3528,7 @@ by (rule integral_reflect) -subsection \Stronger form of FCT; quite a tedious proof.\ +subsection \Stronger form of FCT; quite a tedious proof\ lemma split_minus[simp]: "(\(x, k). f x k) x - (\(x, k). g x k) x = (\(x, k). f x k - g x k) x" by (simp add: split_def) @@ -3904,7 +3904,7 @@ qed -subsection \Stronger form with finite number of exceptional points.\ +subsection \Stronger form with finite number of exceptional points\ lemma fundamental_theorem_of_calculus_interior_strong: fixes f :: "real \ 'a::banach" @@ -4217,7 +4217,7 @@ by (auto simp: has_field_derivative_iff_has_vector_derivative) -subsection \This doesn't directly involve integration, but that gives an easy proof.\ +subsection \This doesn't directly involve integration, but that gives an easy proof\ lemma has_derivative_zero_unique_strong_interval: fixes f :: "real \ 'a::banach" @@ -4251,7 +4251,7 @@ qed -subsection \Generalize a bit to any convex set.\ +subsection \Generalize a bit to any convex set\ lemma has_derivative_zero_unique_strong_convex: fixes f :: "'a::euclidean_space \ 'b::banach" @@ -4919,7 +4919,7 @@ qed -subsection \Continuity of the integral (for a 1-dimensional interval).\ +subsection \Continuity of the integral (for a 1-dimensional interval)\ lemma integrable_alt: fixes f :: "'n::euclidean_space \ 'a::banach" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Jordan_Curve.thy --- a/src/HOL/Analysis/Jordan_Curve.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Jordan_Curve.thy Mon Apr 09 16:20:23 2018 +0200 @@ -9,7 +9,7 @@ begin -subsection\Janiszewski's theorem.\ +subsection\Janiszewski's theorem\ lemma Janiszewski_weak: fixes a b::complex diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Lebesgue_Measure.thy --- a/src/HOL/Analysis/Lebesgue_Measure.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Lebesgue_Measure.thy Mon Apr 09 16:20:23 2018 +0200 @@ -978,7 +978,8 @@ then show ?thesis by (auto dest!: AE_not_in) qed -subsection\ A nice lemma for negligibility proofs.\ + +subsection \A nice lemma for negligibility proofs\ lemma summable_iff_suminf_neq_top: "(\n. f n \ 0) \ \ summable f \ (\i. ennreal (f i)) = top" by (metis summable_suminf_not_top) diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Path_Connected.thy Mon Apr 09 16:20:23 2018 +0200 @@ -3380,7 +3380,7 @@ by (metis dw_le norm_minus_commute not_less order_trans rle wy) qed -section\ Homotopy of maps p,q : X=>Y with property P of all intermediate maps.\ +section\ Homotopy of maps p,q : X=>Y with property P of all intermediate maps\ text%important\ We often just want to require that it fixes some subset, but to take in the case of a loop homotopy, it's convenient to have a general property P.\ @@ -3487,7 +3487,7 @@ qed -subsection%unimportant\ Trivial properties.\ +subsection%unimportant\Trivial properties\ lemma homotopic_with_imp_property: "homotopic_with P X Y f g \ P f \ P g" unfolding homotopic_with_def Ball_def @@ -3742,7 +3742,7 @@ qed -subsection\Homotopy of paths, maintaining the same endpoints.\ +subsection\Homotopy of paths, maintaining the same endpoints\ definition%important homotopic_paths :: "['a set, real \ 'a, real \ 'a::topological_space] \ bool" @@ -3958,7 +3958,7 @@ using%unimportant homotopic_paths_rinv [of "reversepath p" s] assms by simp -subsection\ Homotopy of loops without requiring preservation of endpoints.\ +subsection\Homotopy of loops without requiring preservation of endpoints\ definition%important homotopic_loops :: "'a::topological_space set \ (real \ 'a) \ (real \ 'a) \ bool" where "homotopic_loops s p q \ @@ -4197,7 +4197,7 @@ qed -subsection%unimportant\ Homotopy of "nearby" function, paths and loops.\ +subsection%unimportant\Homotopy of "nearby" function, paths and loops\ lemma homotopic_with_linear: fixes f g :: "_ \ 'b::real_normed_vector" @@ -5521,7 +5521,7 @@ by (metis open_openin openin_topspace subtopology_superset top.extremum topspace_euclidean_subtopology) qed -subsection\Sura-Bura's results about compact components of sets.\ +subsection\Sura-Bura's results about compact components of sets\ proposition Sura_Bura_compact: fixes S :: "'a::euclidean_space set" @@ -7452,7 +7452,7 @@ -subsection\ Self-homeomorphisms shuffling points about in various ways.\ +subsection\Self-homeomorphisms shuffling points about in various ways\ subsubsection%unimportant\The theorem \homeomorphism_moving_points_exists\\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Poly_Roots.thy --- a/src/HOL/Analysis/Poly_Roots.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Poly_Roots.thy Mon Apr 09 16:20:23 2018 +0200 @@ -8,7 +8,7 @@ imports Complex_Main begin -subsection\Basics about polynomial functions: extremal behaviour and root counts.\ +subsection\Basics about polynomial functions: extremal behaviour and root counts\ lemma sub_polyfun: fixes x :: "'a::{comm_ring,monoid_mult}" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Polytope.thy --- a/src/HOL/Analysis/Polytope.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Polytope.thy Mon Apr 09 16:20:23 2018 +0200 @@ -1,4 +1,4 @@ -section \Faces, Extreme Points, Polytopes, Polyhedra etc.\ +section \Faces, Extreme Points, Polytopes, Polyhedra etc\ text\Ported from HOL Light by L C Paulson\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Riemann_Mapping.thy --- a/src/HOL/Analysis/Riemann_Mapping.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Riemann_Mapping.thy Mon Apr 09 16:20:23 2018 +0200 @@ -8,7 +8,7 @@ imports Great_Picard begin -subsection\Moebius functions are biholomorphisms of the unit disc.\ +subsection\Moebius functions are biholomorphisms of the unit disc\ definition Moebius_function :: "[real,complex,complex] \ complex" where "Moebius_function \ \t w z. exp(\ * of_real t) * (z - w) / (1 - cnj w * z)" @@ -853,7 +853,7 @@ using convex_imp_contractible homeomorphic_contractible_eq simply_connected_eq_homeomorphic_to_disc by auto -subsection\A further chain of equivalences about components of the complement of a simply connected set.\ +subsection\A further chain of equivalences about components of the complement of a simply connected set\ text\(following 1.35 in Burckel'S book)\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Starlike.thy Mon Apr 09 16:20:23 2018 +0200 @@ -6,7 +6,7 @@ Author: Johannes Hoelzl, TU Muenchen *) -section \Line segments, Starlike Sets, etc.\ +section \Line segments, Starlike Sets, etc\ theory Starlike imports Convex_Euclidean_Space @@ -4157,7 +4157,7 @@ by (metis Diff_cancel convex_hull_singleton insert_absorb2 open_segment_def segment_convex_hull) qed -subsection%unimportant\Similar results for closure and (relative or absolute) frontier.\ +subsection%unimportant\Similar results for closure and (relative or absolute) frontier\ lemma closure_convex_hull [simp]: fixes s :: "'a::euclidean_space set" @@ -7119,7 +7119,7 @@ done qed -subsection\Decomposing a vector into parts in orthogonal subspaces.\ +subsection\Decomposing a vector into parts in orthogonal subspaces\ text\existence of orthonormal basis for a subspace.\ @@ -7470,7 +7470,7 @@ finally show "dim T \ dim S" by simp qed -subsection\Lower-dimensional affine subsets are nowhere dense.\ +subsection\Lower-dimensional affine subsets are nowhere dense\ proposition%important dense_complement_subspace: fixes S :: "'a :: euclidean_space set" @@ -7583,7 +7583,7 @@ by (simp add: assms dense_complement_convex) -subsection%unimportant\Parallel slices, etc.\ +subsection%unimportant\Parallel slices, etc\ text\ If we take a slice out of a set, we can do it perpendicularly, with the normal vector to the slice parallel to the affine hull.\ diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Tagged_Division.thy --- a/src/HOL/Analysis/Tagged_Division.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Tagged_Division.thy Mon Apr 09 16:20:23 2018 +0200 @@ -55,7 +55,7 @@ by (simp add: field_simps) qed -subsection \Some useful lemmas about intervals.\ +subsection \Some useful lemmas about intervals\ lemma interior_subset_union_intervals: assumes "i = cbox a b" @@ -130,7 +130,7 @@ lemma interval_not_empty: "\i\Basis. a\i \ b\i \ cbox a b \ {}" by (simp add: box_ne_empty) -subsection \Bounds on intervals where they exist.\ +subsection \Bounds on intervals where they exist\ definition interval_upperbound :: "('a::euclidean_space) set \ 'a" where "interval_upperbound s = (\i\Basis. (SUP x:s. x\i) *\<^sub>R i)" @@ -192,7 +192,7 @@ by (subst sum_Basis_prod_eq) (auto simp add: sum_prod) qed -subsection \The notion of a gauge --- simply an open set containing the point.\ +subsection \The notion of a gauge --- simply an open set containing the point\ definition "gauge \ \ (\x. x \ \ x \ open (\ x))" @@ -242,14 +242,14 @@ "(\x. \d :: real. p x \ 0 < d \ q d x) \ (\x. \d>0. p x \ q d x)" by (metis zero_less_one) -subsection \Attempt a systematic general set of "offset" results for components.\ +subsection \Attempt a systematic general set of "offset" results for components\ lemma gauge_modify: assumes "(\S. open S \ open {x. f(x) \ S})" "gauge d" shows "gauge (\x. {y. f y \ d (f x)})" using assms unfolding gauge_def by force -subsection \Divisions.\ +subsection \Divisions\ definition division_of (infixl "division'_of" 40) where @@ -995,7 +995,7 @@ } qed -subsection \Tagged (partial) divisions.\ +subsection \Tagged (partial) divisions\ definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where "s tagged_partial_division_of i \ @@ -1828,7 +1828,7 @@ qed -subsection \Special case of additivity we need for the FTC.\ +subsection \Special case of additivity we need for the FTC\ lemma additive_tagged_division_1: fixes f :: "real \ 'a::real_normed_vector" @@ -1856,7 +1856,7 @@ qed -subsection \Fine-ness of a partition w.r.t. a gauge.\ +subsection \Fine-ness of a partition w.r.t. a gauge\ definition fine (infixr "fine" 46) where "d fine s \ (\(x,k) \ s. k \ d x)" @@ -1887,7 +1887,7 @@ lemma fine_subset: "p \ q \ d fine q \ d fine p" unfolding fine_def by blast -subsection \Some basic combining lemmas.\ +subsection \Some basic combining lemmas\ lemma tagged_division_Union_exists: assumes "finite I" @@ -1907,14 +1907,14 @@ qed -subsection \The set we're concerned with must be closed.\ +subsection \The set we're concerned with must be closed\ lemma division_of_closed: fixes i :: "'n::euclidean_space set" shows "s division_of i \ closed i" unfolding division_of_def by fastforce -subsection \General bisection principle for intervals; might be useful elsewhere.\ +subsection \General bisection principle for intervals; might be useful elsewhere\ lemma interval_bisection_step: fixes type :: "'a::euclidean_space" @@ -2185,7 +2185,7 @@ qed -subsection \Cousin's lemma.\ +subsection \Cousin's lemma\ lemma fine_division_exists: fixes a b :: "'a::euclidean_space" @@ -2231,7 +2231,7 @@ obtains p where "p tagged_division_of {a .. b}" "g fine p" by (metis assms box_real(2) fine_division_exists) -subsection \A technical lemma about "refinement" of division.\ +subsection \A technical lemma about "refinement" of division\ lemma tagged_division_finer: fixes p :: "('a::euclidean_space \ ('a::euclidean_space set)) set" diff -r 5a4280946a25 -r a5ad4c015d1c src/HOL/Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Analysis/Topology_Euclidean_Space.thy Sun Apr 08 12:31:08 2018 +0200 +++ b/src/HOL/Analysis/Topology_Euclidean_Space.thy Mon Apr 09 16:20:23 2018 +0200 @@ -4,7 +4,7 @@ Author: Brian Huffman, Portland State University *) -section \Elementary topology in Euclidean space.\ +section \Elementary topology in Euclidean space\ theory Topology_Euclidean_Space imports @@ -1873,7 +1873,7 @@ by (auto simp: box_def inner_sum_left inner_Basis sum.If_cases) qed -subsection \Intervals in general, including infinite and mixtures of open and closed.\ +subsection \Intervals in general, including infinite and mixtures of open and closed\ definition%important "is_interval (s::('a::euclidean_space) set) \ (\a\s. \b\s. \x. (\i\Basis. ((a\i \ x\i \ x\i \ b\i) \ (b\i \ x\i \ x\i \ a\i))) \ x \ s)" @@ -5653,7 +5653,7 @@ shows "closedin (subtopology euclidean S) (S \ f -` T)" using assms continuous_on_closed by blast -subsection%unimportant \Half-global and completely global cases.\ +subsection%unimportant \Half-global and completely global cases\ lemma continuous_openin_preimage_gen: assumes "continuous_on S f" "open T" @@ -5743,7 +5743,7 @@ with \x = f y\ show "x \ f ` interior S" .. qed -subsection%unimportant \Topological properties of linear functions.\ +subsection%unimportant \Topological properties of linear functions\ lemma linear_lim_0: assumes "bounded_linear f"