# HG changeset patch # User nipkow # Date 1382515110 -7200 # Node ID a5eec4263b3ab2e62213c4e4cda1c61462818733 # Parent 7fba375a7e7d01ec5bd7d1e8123de01186cb7871 tuned diff -r 7fba375a7e7d -r a5eec4263b3a src/HOL/IMP/Big_Step.thy --- a/src/HOL/IMP/Big_Step.thy Tue Oct 22 16:07:09 2013 +0200 +++ b/src/HOL/IMP/Big_Step.thy Wed Oct 23 09:58:30 2013 +0200 @@ -268,11 +268,9 @@ subsection "Execution is deterministic" text {* This proof is automatic. *} -text_raw{*\snip{BigStepDeterministic}{0}{1}{% *} + theorem big_step_determ: "\ (c,s) \ t; (c,s) \ u \ \ u = t" by (induction arbitrary: u rule: big_step.induct) blast+ -text_raw{*}%endsnip*} - text {* This is the proof as you might present it in a lecture. The remaining diff -r 7fba375a7e7d -r a5eec4263b3a src/HOL/IMP/Small_Step.thy --- a/src/HOL/IMP/Small_Step.thy Tue Oct 22 16:07:09 2013 +0200 +++ b/src/HOL/IMP/Small_Step.thy Wed Oct 23 09:58:30 2013 +0200 @@ -4,7 +4,6 @@ subsection "The transition relation" -text_raw{*\snip{SmallStepDef}{0}{2}{% *} inductive small_step :: "com * state \ com * state \ bool" (infix "\" 55) where @@ -18,7 +17,6 @@ While: "(WHILE b DO c,s) \ (IF b THEN c;; WHILE b DO c ELSE SKIP,s)" -text_raw{*}%endsnip*} abbreviation