# HG changeset patch # User blanchet # Date 1277406073 -7200 # Node ID a62f742f1d580b11f6a75d55e988153c74bf5c77 # Parent 6a7a9261b9ad6ed8ec6137144d63dd636762bb56 yields ill-typed ATP/metis proofs -- raus! diff -r 6a7a9261b9ad -r a62f742f1d58 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Thu Jun 24 21:00:37 2010 +0200 +++ b/src/HOL/Predicate.thy Thu Jun 24 21:01:13 2010 +0200 @@ -645,7 +645,7 @@ lemma "f () = False \ f () = True" by simp -lemma closure_of_bool_cases: +lemma closure_of_bool_cases [no_atp]: assumes "(f :: unit \ bool) = (%u. False) \ P f" assumes "f = (%u. True) \ P f" shows "P f"