# HG changeset patch # User nipkow # Date 1513890761 -3600 # Node ID a6d8458b48c0b713078d5e57c6f8edf579590c0d # Parent 759d4fb30bfcdf71c46c8da16772bd0c63631131# Parent 73635a5bfa5c6e2f5e51f2248f6b70dfea54a5ed merged diff -r 759d4fb30bfc -r a6d8458b48c0 src/HOL/Analysis/Cauchy_Integral_Theorem.thy --- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Thu Dec 21 12:19:24 2017 +0100 +++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy Thu Dec 21 22:12:41 2017 +0100 @@ -4149,11 +4149,11 @@ assumes \: "path \" and loop: "pathfinish \ = pathstart \" shows "open {z. z \ path_image \ \ winding_number \ z = k}" proof - - have op: "open (- path_image \)" + have opn: "open (- path_image \)" by (simp add: closed_path_image \ open_Compl) { fix z assume z: "z \ path_image \" and k: "k = winding_number \ z" obtain e where e: "e>0" "ball z e \ - path_image \" - using open_contains_ball [of "- path_image \"] op z + using open_contains_ball [of "- path_image \"] opn z by blast have "\e>0. \y. dist y z < e \ y \ path_image \ \ winding_number \ y = winding_number \ z" apply (rule_tac x=e in exI) diff -r 759d4fb30bfc -r a6d8458b48c0 src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Thu Dec 21 12:19:24 2017 +0100 +++ b/src/HOL/Analysis/Connected.thy Thu Dec 21 22:12:41 2017 +0100 @@ -2266,7 +2266,7 @@ J. C. Burkill and H. Burkill. A Second Course in Mathematical Analysis (CUP, 2002)\ lemma Heine_Borel_lemma: - assumes "compact S" and Ssub: "S \ \\" and op: "\G. G \ \ \ open G" + assumes "compact S" and Ssub: "S \ \\" and opn: "\G. G \ \ \ open G" obtains e where "0 < e" "\x. x \ S \ \G \ \. ball x e \ G" proof - have False if neg: "\e. 0 < e \ \x \ S. \G \ \. \ ball x e \ G" @@ -2280,7 +2280,7 @@ then obtain G where "l \ G" "G \ \" using Ssub by auto then obtain e where "0 < e" and e: "\z. dist z l < e \ z \ G" - using op open_dist by blast + using opn open_dist by blast obtain N1 where N1: "\n. n \ N1 \ dist (f (r n)) l < e/2" using to_l apply (simp add: lim_sequentially) using \0 < e\ half_gt_zero that by blast @@ -3058,7 +3058,7 @@ lemma sphere_translation: fixes a :: "'n::euclidean_space" - shows "sphere (a+c) r = op+a ` sphere c r" + shows "sphere (a+c) r = op+ a ` sphere c r" apply safe apply (rule_tac x="x-a" in image_eqI) apply (auto simp: dist_norm algebra_simps) @@ -3066,7 +3066,7 @@ lemma cball_translation: fixes a :: "'n::euclidean_space" - shows "cball (a+c) r = op+a ` cball c r" + shows "cball (a+c) r = op+ a ` cball c r" apply safe apply (rule_tac x="x-a" in image_eqI) apply (auto simp: dist_norm algebra_simps) @@ -3074,7 +3074,7 @@ lemma ball_translation: fixes a :: "'n::euclidean_space" - shows "ball (a+c) r = op+a ` ball c r" + shows "ball (a+c) r = op+ a ` ball c r" apply safe apply (rule_tac x="x-a" in image_eqI) apply (auto simp: dist_norm algebra_simps) @@ -4566,7 +4566,7 @@ proof - obtain \ :: "'a set set" where "countable \" - and op: "\C. C \ \ \ open C" + and opn: "\C. C \ \ \ open C" and Un: "\S. open S \ \U. U \ \ \ S = \U" using univ_second_countable by blast have *: "infinite (range (\n. ball (0::'a) (inverse(Suc n))))" @@ -4593,7 +4593,7 @@ done show ?thesis apply (rule that [OF \inj f\ _ *]) - apply (auto simp: \\ = range f\ op) + apply (auto simp: \\ = range f\ opn) done qed diff -r 759d4fb30bfc -r a6d8458b48c0 src/HOL/Analysis/Embed_Measure.thy --- a/src/HOL/Analysis/Embed_Measure.thy Thu Dec 21 12:19:24 2017 +0100 +++ b/src/HOL/Analysis/Embed_Measure.thy Thu Dec 21 22:12:41 2017 +0100 @@ -189,7 +189,7 @@ by(rule embed_measure_count_space')(erule subset_inj_on, simp) lemma sets_embed_measure_alt: - "inj f \ sets (embed_measure M f) = (op`f) ` sets M" + "inj f \ sets (embed_measure M f) = (op` f) ` sets M" by (auto simp: sets_embed_measure) lemma emeasure_embed_measure_image': diff -r 759d4fb30bfc -r a6d8458b48c0 src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 12:19:24 2017 +0100 +++ b/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 22:12:41 2017 +0100 @@ -1738,7 +1738,7 @@ case True then show ?thesis by (simp add: path_component_refl_eq pathstart_def) next - case False have "continuous_on {0..1} (p o (op*y))" + case False have "continuous_on {0..1} (p o (op* y))" apply (rule continuous_intros)+ using p [unfolded path_def] y apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p]) @@ -2012,7 +2012,7 @@ by (intro path_connected_continuous_image path_connected_punctured_universe assms) with eq have "path_connected (sphere (0::'a) r)" by auto - then have "path_connected(op +a ` (sphere (0::'a) r))" + then have "path_connected(op + a ` (sphere (0::'a) r))" by (simp add: path_connected_translation) then show ?thesis by (metis add.right_neutral sphere_translation) @@ -2241,7 +2241,7 @@ assumes "DIM('a) = 1" and "r > 0" obtains x y where "sphere a r = {x,y} \ dist x y = 2*r" proof - - have "sphere a r = op +a ` sphere 0 r" + have "sphere a r = op + a ` sphere 0 r" by (metis add.right_neutral sphere_translation) then show ?thesis using sphere_1D_doubleton_zero [OF assms] @@ -2282,7 +2282,7 @@ assumes 2: "2 \ DIM('N)" and pc: "path_connected {r. 0 \ r \ P r}" shows "path_connected {x. P(norm(x - a))}" proof - - have "{x. P(norm(x - a))} = op+a ` {x. P(norm x)}" + have "{x. P(norm(x - a))} = op+ a ` {x. P(norm x)}" by force moreover have "path_connected {x::'N. P(norm x)}" proof - @@ -8262,10 +8262,10 @@ by (meson Topological_Spaces.connected_continuous_image \connected S\ homeomorphism_cont1 homeomorphism_of_subsets homhj hull_subset top_greatest) have hUS: "h ` U \ h ` S" by (meson homeomorphism_imp_open_map homeomorphism_of_subsets homhj hull_subset opeS opeU open_UNIV openin_open_eq) - have op: "openin (subtopology euclidean (affine hull S)) U \ open (h ` U)" for U + have opn: "openin (subtopology euclidean (affine hull S)) U \ open (h ` U)" for U using homeomorphism_imp_open_map [OF homhj] by simp have "open (h ` U)" "open (h ` S)" - by (auto intro: opeS opeU openin_trans op) + by (auto intro: opeS opeU openin_trans opn) then obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g" and f: "\x. x \ h ` K \ f x \ h ` U" and sub: "{x. \ (f x = x \ g x = x)} \ h ` S" diff -r 759d4fb30bfc -r a6d8458b48c0 src/HOL/Library/Numeral_Type.thy --- a/src/HOL/Library/Numeral_Type.thy Thu Dec 21 12:19:24 2017 +0100 +++ b/src/HOL/Library/Numeral_Type.thy Thu Dec 21 22:12:41 2017 +0100 @@ -299,7 +299,7 @@ (auto simp add: less_eq_bit0_def less_bit0_def less_eq_bit1_def less_bit1_def Rep_bit0_inject Rep_bit1_inject) end -lemma (in preorder) tranclp_less: "op <\<^sup>+\<^sup>+ = op <" +lemma (in preorder) tranclp_less: "op < \<^sup>+\<^sup>+ = op <" by(auto simp add: fun_eq_iff intro: less_trans elim: tranclp.induct) instance bit0 and bit1 :: (finite) wellorder