# HG changeset patch # User eberlm # Date 1513009712 -3600 # Node ID a77d54ef718b905696f291dd36a7e902903bae17 # Parent 22a5822f52f7278698d2ae1d8cb21aaa926b8aa8 Some facts on the Mangoldt function diff -r 22a5822f52f7 -r a77d54ef718b src/HOL/Number_Theory/Prime_Powers.thy --- a/src/HOL/Number_Theory/Prime_Powers.thy Fri Dec 08 19:25:47 2017 +0000 +++ b/src/HOL/Number_Theory/Prime_Powers.thy Mon Dec 11 17:28:32 2017 +0100 @@ -422,7 +422,13 @@ definition mangoldt :: "nat \ 'a :: real_algebra_1" where "mangoldt n = (if primepow n then of_real (ln (real (aprimedivisor n))) else 0)" - + +lemma mangoldt_0 [simp]: "mangoldt 0 = 0" + by (simp add: mangoldt_def) + +lemma mangoldt_Suc_0 [simp]: "mangoldt (Suc 0) = 0" + by (simp add: mangoldt_def) + lemma of_real_mangoldt [simp]: "of_real (mangoldt n) = mangoldt n" by (simp add: mangoldt_def) @@ -481,6 +487,10 @@ with True show ?thesis by (auto simp: mangoldt_def abs_if) qed (auto simp: mangoldt_def) +lemma Re_mangoldt [simp]: "Re (mangoldt n) = mangoldt n" + and Im_mangoldt [simp]: "Im (mangoldt n) = 0" + by (simp_all add: mangoldt_def) + lemma abs_mangoldt [simp]: "abs (mangoldt n :: real) = mangoldt n" using norm_mangoldt[of n, where ?'a = real, unfolded real_norm_def] .