# HG changeset patch # User wenzelm # Date 1321819523 -3600 # Node ID a89b4bc311a53064ebcab25bbbc064b0449aed58 # Parent 29cf40fe8daf2804a51a8ada9eaf8266c2d7da18 eliminated obsolete "standard"; diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Event.thy --- a/src/HOL/Auth/Event.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Event.thy Sun Nov 20 21:05:23 2011 +0100 @@ -93,7 +93,7 @@ (*Simplifying parts(insert X (knows Spy evs)) = parts{X} \ parts(knows Spy evs). This version won't loop with the simplifier.*) -lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard] +lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs lemma knows_Spy_Says [simp]: "knows Spy (Says A B X # evs) = insert X (knows Spy evs)" @@ -138,10 +138,10 @@ text{*Elimination rules: derive contradictions from old Says events containing items known to be fresh*} lemmas Says_imp_parts_knows_Spy = - Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard] + Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl] lemmas knows_Spy_partsEs = - Says_imp_parts_knows_Spy parts.Body [THEN revcut_rl, standard] + Says_imp_parts_knows_Spy parts.Body [THEN revcut_rl] lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj] @@ -278,7 +278,7 @@ intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD]) -lemmas analz_impI = impI [where P = "Y \ analz (knows Spy evs)", standard] +lemmas analz_impI = impI [where P = "Y \ analz (knows Spy evs)"] for Y evs ML {* @@ -294,7 +294,7 @@ subsubsection{*Useful for case analysis on whether a hash is a spoof or not*} -lemmas syan_impI = impI [where P = "Y \ synth (analz (knows Spy evs))", standard] +lemmas syan_impI = impI [where P = "Y \ synth (analz (knows Spy evs))"] for Y evs ML {* diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Message.thy --- a/src/HOL/Auth/Message.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Message.thy Sun Nov 20 21:05:23 2011 +0100 @@ -166,7 +166,7 @@ lemma parts_increasing: "H \ parts(H)" by blast -lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] +lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] lemma parts_empty [simp]: "parts{} = {}" apply safe @@ -358,9 +358,9 @@ apply (erule analz.induct, blast+) done -lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] +lemmas analz_into_parts = analz_subset_parts [THEN subsetD] -lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] +lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] lemma parts_analz [simp]: "parts (analz H) = parts H" @@ -371,7 +371,7 @@ apply (erule analz.induct, auto) done -lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] +lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] subsubsection{*General equational properties *} @@ -790,21 +790,23 @@ text{*Rewrites to push in Key and Crypt messages, so that other messages can be pulled out using the @{text analz_insert} rules*} -lemmas pushKeys [standard] = +lemmas pushKeys = insert_commute [of "Key K" "Agent C"] insert_commute [of "Key K" "Nonce N"] insert_commute [of "Key K" "Number N"] insert_commute [of "Key K" "Hash X"] insert_commute [of "Key K" "MPair X Y"] insert_commute [of "Key K" "Crypt X K'"] + for K C N X Y K' -lemmas pushCrypts [standard] = +lemmas pushCrypts = insert_commute [of "Crypt X K" "Agent C"] insert_commute [of "Crypt X K" "Agent C"] insert_commute [of "Crypt X K" "Nonce N"] insert_commute [of "Crypt X K" "Number N"] insert_commute [of "Crypt X K" "Hash X'"] insert_commute [of "Crypt X K" "MPair X' Y"] + for X K C N X' Y text{*Cannot be added with @{text "[simp]"} -- messages should not always be re-ordered. *} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/OtwayRees.thy --- a/src/HOL/Auth/OtwayRees.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/OtwayRees.thy Sun Nov 20 21:05:23 2011 +0100 @@ -121,7 +121,7 @@ We can replace them by rewriting with parts_insert2 and proving using dest: parts_cut, but the proofs become more difficult.*) lemmas OR2_parts_knows_Spy = - OR2_analz_knows_Spy [THEN analz_into_parts, standard] + OR2_analz_knows_Spy [THEN analz_into_parts] (*There could be OR4_parts_knows_Spy and Oops_parts_knows_Spy, but for some reason proofs work without them!*) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/OtwayReesBella.thy --- a/src/HOL/Auth/OtwayReesBella.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/OtwayReesBella.thy Sun Nov 20 21:05:23 2011 +0100 @@ -122,7 +122,7 @@ by blast lemmas OR2_parts_knows_Spy = - OR2_analz_knows_Spy [THEN analz_into_parts, standard] + OR2_analz_knows_Spy [THEN analz_into_parts] ML {* diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/OtwayRees_Bad.thy --- a/src/HOL/Auth/OtwayRees_Bad.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/OtwayRees_Bad.thy Sun Nov 20 21:05:23 2011 +0100 @@ -128,7 +128,7 @@ text{*Forwarding lemma: see comments in OtwayRees.thy*} lemmas OR2_parts_knows_Spy = - OR2_analz_knows_Spy [THEN analz_into_parts, standard] + OR2_analz_knows_Spy [THEN analz_into_parts] text{*Theorems of the form @{term "X \ parts (spies evs)"} imply that diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Smartcard/EventSC.thy --- a/src/HOL/Auth/Smartcard/EventSC.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Smartcard/EventSC.thy Sun Nov 20 21:05:23 2011 +0100 @@ -118,7 +118,7 @@ (*Simplifying parts(insert X (knows Spy evs)) = parts{X} \ parts(knows Spy evs). This version won't loop with the simplifier.*) -lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard] +lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs lemma knows_Spy_Says [simp]: "knows Spy (Says A B X # evs) = insert X (knows Spy evs)" @@ -237,8 +237,8 @@ text{*Elimination rules: derive contradictions from old Says events containing items known to be fresh*} lemmas knows_Spy_partsEs = - Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard] - parts.Body [THEN revcut_rl, standard] + Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl] + parts.Body [THEN revcut_rl] diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Yahalom.thy --- a/src/HOL/Auth/Yahalom.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Yahalom.thy Sun Nov 20 21:05:23 2011 +0100 @@ -121,7 +121,7 @@ by blast lemmas YM4_parts_knows_Spy = - YM4_analz_knows_Spy [THEN analz_into_parts, standard] + YM4_analz_knows_Spy [THEN analz_into_parts] text{*For Oops*} lemma YM4_Key_parts_knows_Spy: diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Yahalom2.thy --- a/src/HOL/Auth/Yahalom2.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Yahalom2.thy Sun Nov 20 21:05:23 2011 +0100 @@ -116,7 +116,7 @@ by blast lemmas YM4_parts_knows_Spy = - YM4_analz_knows_Spy [THEN analz_into_parts, standard] + YM4_analz_knows_Spy [THEN analz_into_parts] (** Theorems of the form X \ parts (knows Spy evs) imply that NOBODY diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Auth/Yahalom_Bad.thy --- a/src/HOL/Auth/Yahalom_Bad.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Auth/Yahalom_Bad.thy Sun Nov 20 21:05:23 2011 +0100 @@ -103,7 +103,7 @@ by blast lemmas YM4_parts_knows_Spy = - YM4_analz_knows_Spy [THEN analz_into_parts, standard] + YM4_analz_knows_Spy [THEN analz_into_parts] text{*Theorems of the form @{term "X \ parts (knows Spy evs)"} imply diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/AxCompl.thy --- a/src/HOL/Bali/AxCompl.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/AxCompl.thy Sun Nov 20 21:05:23 2011 +0100 @@ -30,7 +30,7 @@ done lemmas finite_nyinitcls [simp] = - finite_is_class [THEN nyinitcls_subset_class [THEN finite_subset], standard] + finite_is_class [THEN nyinitcls_subset_class [THEN finite_subset]] lemma card_nyinitcls_bound: "card (nyinitcls G s) \ card {C. is_class G C}" apply (rule nyinitcls_subset_class [THEN finite_is_class [THEN card_mono]]) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/AxSem.thy --- a/src/HOL/Bali/AxSem.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/AxSem.thy Sun Nov 20 21:05:23 2011 +0100 @@ -1016,7 +1016,7 @@ apply (rule ax_derivs.Skip) apply fast done -lemmas ax_SkipI = ax_Skip [THEN conseq1, standard] +lemmas ax_SkipI = ax_Skip [THEN conseq1] section "derived rules for methd call" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/Decl.thy --- a/src/HOL/Bali/Decl.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/Decl.thy Sun Nov 20 21:05:23 2011 +0100 @@ -613,8 +613,8 @@ apply auto done -lemmas subint1_acyclic = subint1_irrefl_lemma2 [THEN acyclicI, standard] -lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI, standard] +lemmas subint1_acyclic = subint1_irrefl_lemma2 [THEN acyclicI] +lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI] lemma wf_subint1: "ws_prog G \ wf ((subint1 G)\)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/Table.thy --- a/src/HOL/Bali/Table.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/Table.thy Sun Nov 20 21:05:23 2011 +0100 @@ -222,7 +222,7 @@ apply auto done -lemmas table_of_map2_SomeI = inj_Pair_const2 [THEN map_of_mapk_SomeI, standard] +lemmas table_of_map2_SomeI = inj_Pair_const2 [THEN map_of_mapk_SomeI] lemma table_of_map_SomeI [rule_format (no_asm)]: "table_of t k = Some x \ table_of (map (\(k,x). (k, f x)) t) k = Some (f x)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/TypeRel.thy --- a/src/HOL/Bali/TypeRel.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/TypeRel.thy Sun Nov 20 21:05:23 2011 +0100 @@ -60,7 +60,7 @@ (* direct subinterface in Decl.thy, cf. 9.1.3 *) (* direct subclass in Decl.thy, cf. 8.1.3 *) -lemmas subcls_direct = subcls1I [THEN r_into_rtrancl, standard] +lemmas subcls_direct = subcls1I [THEN r_into_rtrancl] lemma subcls_direct1: "\class G C = Some c; C \ Object;D=super c\ \ G\C\\<^sub>C D" @@ -554,9 +554,9 @@ done lemmas subint_antisym = - subint1_acyclic [THEN acyclic_impl_antisym_rtrancl, standard] + subint1_acyclic [THEN acyclic_impl_antisym_rtrancl] lemmas subcls_antisym = - subcls1_acyclic [THEN acyclic_impl_antisym_rtrancl, standard] + subcls1_acyclic [THEN acyclic_impl_antisym_rtrancl] lemma widen_antisym: "\G\S\T; G\T\S; ws_prog G\ \ S=T" by (fast elim: widen_antisym_lemma subint_antisym [THEN antisymD] diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Bali/WellForm.thy --- a/src/HOL/Bali/WellForm.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Bali/WellForm.thy Sun Nov 20 21:05:23 2011 +0100 @@ -739,7 +739,7 @@ proof - assume asm: "wf_prog G" "is_iface G I" "im \ imethds G I sig" - note iface_rec_induct' = iface_rec.induct[of "(%x y z. P x y)", standard] + note iface_rec_induct' = iface_rec.induct[of "(%x y z. P x y)", standard] (* FIXME !? *) have "wf_prog G \ (\ i im. iface G I = Some i \ im \ imethds G I sig \ \is_static im \ accmodi im = Public)" (is "?P G I") @@ -1355,7 +1355,7 @@ qed qed -lemmas class_rec_induct' = class_rec.induct[of "%x y z w. P x y", standard] +lemmas class_rec_induct' = class_rec.induct [of "%x y z w. P x y"] for P lemma declclass_widen[rule_format]: "wf_prog G diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Sun Nov 20 21:05:23 2011 +0100 @@ -281,7 +281,7 @@ apply (drule_tac x = m in spec) apply (auto simp add:field_simps) done -lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0, standard] +lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0] lemma poly_roots_index_length0: "poly p (x::'a::idom) \ poly [] x ==> \i. \x. (poly p x = 0) --> (\n. n \ length p & x = i n)" @@ -322,7 +322,7 @@ apply (clarsimp simp add: field_simps) done -lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma, standard] +lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma] lemma poly_roots_index_length: "poly p (x::'a::idom) \ poly [] x ==> \i. \x. (poly p x = 0) --> x \ set i" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy --- a/src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy Sun Nov 20 21:05:23 2011 +0100 @@ -24,7 +24,7 @@ elements of the chain. *} lemmas [dest?] = chainD -lemmas chainE2 [elim?] = chainD2 [elim_format, standard] +lemmas chainE2 [elim?] = chainD2 [elim_format] lemma some_H'h't: assumes M: "M = norm_pres_extensions E p F f" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/IMP/Comp_Rev.thy --- a/src/HOL/IMP/Comp_Rev.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/IMP/Comp_Rev.thy Sun Nov 20 21:05:23 2011 +0100 @@ -363,7 +363,7 @@ qed lemmas exec_n_drop_Cons = - exec_n_drop_left [where P="[instr]", simplified, standard] + exec_n_drop_left [where P="[instr]", simplified] for instr definition "closed P \ exits P \ {isize P}" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/IMPP/Hoare.thy --- a/src/HOL/IMPP/Hoare.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/IMPP/Hoare.thy Sun Nov 20 21:05:23 2011 +0100 @@ -460,7 +460,7 @@ done (* requires Body+empty+insert / BodyN, com_det *) -lemmas hoare_complete = MGF' [THEN MGF_complete, standard] +lemmas hoare_complete = MGF' [THEN MGF_complete] subsection "unused derived rules" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Induct/PropLog.thy --- a/src/HOL/Induct/PropLog.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Induct/PropLog.thy Sun Nov 20 21:05:23 2011 +0100 @@ -111,7 +111,7 @@ lemmas thms_falseE = weaken_right [THEN thms.DN [THEN thms.MP]] -lemmas thms_notE = thms.MP [THEN thms_falseE, standard] +lemmas thms_notE = thms.MP [THEN thms_falseE] subsubsection {* Soundness of the rules wrt truth-table semantics *} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Induct/SList.thy --- a/src/HOL/Induct/SList.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Induct/SList.thy Sun Nov 20 21:05:23 2011 +0100 @@ -191,7 +191,7 @@ by (simp add: NIL_def CONS_def) lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym] -lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE, standard] +lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE] lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL] lemma Cons_not_Nil [iff]: "x # xs ~= Nil" @@ -200,8 +200,9 @@ apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def]) done -lemmas Nil_not_Cons [iff] = Cons_not_Nil [THEN not_sym, standard] -lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE, standard] +lemmas Nil_not_Cons = Cons_not_Nil [THEN not_sym] +declare Nil_not_Cons [iff] +lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE] lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil] (** Injectiveness of CONS and Cons **) @@ -220,7 +221,7 @@ apply (auto simp add: Rep_List_inject) done -lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE, standard] +lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE] lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)" by (induct L == "CONS M N" set: list) auto @@ -264,8 +265,7 @@ by (simp add: List_rec_def) lemmas List_rec_unfold = - def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl], - standard] + def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl]] (** pred_sexp lemmas **) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Library/AList.thy --- a/src/HOL/Library/AList.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Library/AList.thy Sun Nov 20 21:05:23 2011 +0100 @@ -467,7 +467,7 @@ (map_of n k = Some x \ map_of n k = None \ map_of m k = Some x)" by (simp add: merge_conv' map_add_Some_iff) -lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1, standard] +lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1] lemma merge_find_right[simp]: "map_of n k = Some v \ map_of (merge m n) k = Some v" by (simp add: merge_conv') diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Library/Polynomial.thy --- a/src/HOL/Library/Polynomial.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Library/Polynomial.thy Sun Nov 20 21:05:23 2011 +0100 @@ -928,11 +928,9 @@ lemma pdivmod_rel_by_0_iff: "pdivmod_rel x 0 q r \ q = 0 \ r = x" by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_by_0) -lemmas pdivmod_rel_unique_div = - pdivmod_rel_unique [THEN conjunct1, standard] +lemmas pdivmod_rel_unique_div = pdivmod_rel_unique [THEN conjunct1] -lemmas pdivmod_rel_unique_mod = - pdivmod_rel_unique [THEN conjunct2, standard] +lemmas pdivmod_rel_unique_mod = pdivmod_rel_unique [THEN conjunct2] instantiation poly :: (field) ring_div begin diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Metis_Examples/Message.thy --- a/src/HOL/Metis_Examples/Message.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Metis_Examples/Message.thy Sun Nov 20 21:05:23 2011 +0100 @@ -164,7 +164,7 @@ lemma parts_increasing: "H \ parts(H)" by blast -lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] +lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] lemma parts_empty [simp]: "parts{} = {}" apply safe @@ -353,9 +353,9 @@ apply (erule analz.induct, blast+) done -lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] +lemmas analz_into_parts = analz_subset_parts [THEN subsetD] -lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] +lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] lemma parts_analz [simp]: "parts (analz H) = parts H" apply (rule equalityI) @@ -369,7 +369,7 @@ apply (erule analz.induct, auto) done -lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] +lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] subsubsection{*General equational properties *} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/MicroJava/BV/JType.thy --- a/src/HOL/MicroJava/BV/JType.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/MicroJava/BV/JType.thy Sun Nov 20 21:05:23 2011 +0100 @@ -142,7 +142,7 @@ apply (case_tac t) apply simp apply simp -apply (insert rtrancl_r_diff_Id [symmetric, standard, of "subcls1 G"]) +apply (insert rtrancl_r_diff_Id [symmetric, of "subcls1 G"]) apply simp apply (erule rtrancl.cases) apply blast diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/MicroJava/J/Example.thy --- a/src/HOL/MicroJava/J/Example.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/MicroJava/J/Example.thy Sun Nov 20 21:05:23 2011 +0100 @@ -202,7 +202,7 @@ apply (simp (no_asm) add: ObjectC_def BaseC_def ExtC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def) done -lemmas subcls_direct = subcls1I [THEN r_into_rtrancl [where r="subcls1 G"], standard] +lemmas subcls_direct = subcls1I [THEN r_into_rtrancl [where r="subcls1 G"]] for G lemma Ext_subcls_Base [simp]: "tprg\Ext\C Base" apply (rule subcls_direct) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Sun Nov 20 21:05:23 2011 +0100 @@ -141,22 +141,22 @@ done lemmas scaleR_right_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_scaleR_right, standard] + bounded_linear.has_derivative [OF bounded_linear_scaleR_right] lemmas scaleR_left_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_scaleR_left, standard] + bounded_linear.has_derivative [OF bounded_linear_scaleR_left] lemmas inner_right_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_inner_right, standard] + bounded_linear.has_derivative [OF bounded_linear_inner_right] lemmas inner_left_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_inner_left, standard] + bounded_linear.has_derivative [OF bounded_linear_inner_left] lemmas mult_right_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_mult_right, standard] + bounded_linear.has_derivative [OF bounded_linear_mult_right] lemmas mult_left_has_derivative = - bounded_linear.has_derivative [OF bounded_linear_mult_left, standard] + bounded_linear.has_derivative [OF bounded_linear_mult_left] lemmas euclidean_component_has_derivative = bounded_linear.has_derivative [OF bounded_linear_euclidean_component] diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/NSA/Examples/NSPrimes.thy --- a/src/HOL/NSA/Examples/NSPrimes.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/NSA/Examples/NSPrimes.thy Sun Nov 20 21:05:23 2011 +0100 @@ -39,7 +39,7 @@ apply (force intro!: dvd_mult) done -lemmas dvd_by_all2 = dvd_by_all [THEN spec, standard] +lemmas dvd_by_all2 = dvd_by_all [THEN spec] lemma hypnat_of_nat_le_zero_iff: "(hypnat_of_nat n <= 0) = (n = 0)" by (transfer, simp) @@ -50,7 +50,7 @@ lemma hdvd_by_all: "\M. \N. 0 < N & (\m. 0 < m & (m::hypnat) <= M --> m dvd N)" by (transfer, rule dvd_by_all) -lemmas hdvd_by_all2 = hdvd_by_all [THEN spec, standard] +lemmas hdvd_by_all2 = hdvd_by_all [THEN spec] (* Goldblatt: Exercise 5.11(2) - p. 57 *) lemma hypnat_dvd_all_hypnat_of_nat: diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/NSA/HyperDef.thy --- a/src/HOL/NSA/HyperDef.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/NSA/HyperDef.thy Sun Nov 20 21:05:23 2011 +0100 @@ -422,7 +422,7 @@ lemma power_hypreal_of_real_number_of: "(number_of v :: hypreal) ^ n = hypreal_of_real ((number_of v) ^ n)" by simp -declare power_hypreal_of_real_number_of [of _ "number_of w", standard, simp] +declare power_hypreal_of_real_number_of [of _ "number_of w", simp] for w (* lemma hrealpow_HFinite: fixes x :: "'a::{real_normed_algebra,power} star" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/NSA/StarDef.thy --- a/src/HOL/NSA/StarDef.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/NSA/StarDef.thy Sun Nov 20 21:05:23 2011 +0100 @@ -683,18 +683,18 @@ text{*As above, for numerals*} lemmas star_of_number_less = - star_of_less [of "number_of w", standard, simplified star_of_number_of] + star_of_less [of "number_of w", simplified star_of_number_of] for w lemmas star_of_number_le = - star_of_le [of "number_of w", standard, simplified star_of_number_of] + star_of_le [of "number_of w", simplified star_of_number_of] for w lemmas star_of_number_eq = - star_of_eq [of "number_of w", standard, simplified star_of_number_of] + star_of_eq [of "number_of w", simplified star_of_number_of] for w lemmas star_of_less_number = - star_of_less [of _ "number_of w", standard, simplified star_of_number_of] + star_of_less [of _ "number_of w", simplified star_of_number_of] for w lemmas star_of_le_number = - star_of_le [of _ "number_of w", standard, simplified star_of_number_of] + star_of_le [of _ "number_of w", simplified star_of_number_of] for w lemmas star_of_eq_number = - star_of_eq [of _ "number_of w", standard, simplified star_of_number_of] + star_of_eq [of _ "number_of w", simplified star_of_number_of] for w lemmas star_of_simps [simp] = star_of_add star_of_diff star_of_minus diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/NanoJava/AxSem.thy --- a/src/HOL/NanoJava/AxSem.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/NanoJava/AxSem.thy Sun Nov 20 21:05:23 2011 +0100 @@ -196,6 +196,6 @@ apply (auto del: image_eqI intro: rev_image_eqI) done -lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified, standard] +lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm end diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/NanoJava/TypeRel.thy --- a/src/HOL/NanoJava/TypeRel.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/NanoJava/TypeRel.thy Sun Nov 20 21:05:23 2011 +0100 @@ -86,7 +86,7 @@ apply auto done -lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI, standard] +lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI] lemma wf_subcls1: "ws_prog \ wf (subcls1\)" by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Number_Theory/Primes.thy --- a/src/HOL/Number_Theory/Primes.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Number_Theory/Primes.thy Sun Nov 20 21:05:23 2011 +0100 @@ -206,7 +206,7 @@ "prime (p::nat) \ p > 1 \ (\n \ set [2.. n dvd p)" by (auto simp add: prime_nat_code) -lemmas prime_nat_simp_number_of [simp] = prime_nat_simp [of "number_of m", standard] +lemmas prime_nat_simp_number_of [simp] = prime_nat_simp [of "number_of m"] for m lemma prime_int_code [code]: "prime (p::int) \ p > 1 \ (\n \ {1<.. p > 1 \ (\n \ set [2..p - 1]. ~ n dvd p)" by (auto simp add: prime_int_code) -lemmas prime_int_simp_number_of [simp] = prime_int_simp [of "number_of m", standard] +lemmas prime_int_simp_number_of [simp] = prime_int_simp [of "number_of m"] for m lemma two_is_prime_nat [simp]: "prime (2::nat)" by simp diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Old_Number_Theory/EulerFermat.thy --- a/src/HOL/Old_Number_Theory/EulerFermat.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Old_Number_Theory/EulerFermat.thy Sun Nov 20 21:05:23 2011 +0100 @@ -196,10 +196,8 @@ apply (rule aux_some, simp_all) done -lemmas RRset2norRR_correct1 = - RRset2norRR_correct [THEN conjunct1, standard] -lemmas RRset2norRR_correct2 = - RRset2norRR_correct [THEN conjunct2, standard] +lemmas RRset2norRR_correct1 = RRset2norRR_correct [THEN conjunct1] +lemmas RRset2norRR_correct2 = RRset2norRR_correct [THEN conjunct2] lemma RsetR_fin: "A \ RsetR m ==> finite A" by (induct set: RsetR) auto diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Old_Number_Theory/WilsonBij.thy --- a/src/HOL/Old_Number_Theory/WilsonBij.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Old_Number_Theory/WilsonBij.thy Sun Nov 20 21:05:23 2011 +0100 @@ -41,9 +41,9 @@ apply auto done -lemmas inv_ge = inv_correct [THEN conjunct1, standard] -lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard] -lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard] +lemmas inv_ge = inv_correct [THEN conjunct1] +lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1] +lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2] lemma inv_not_0: "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \ 0" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Proofs/Lambda/NormalForm.thy --- a/src/HOL/Proofs/Lambda/NormalForm.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Proofs/Lambda/NormalForm.thy Sun Nov 20 21:05:23 2011 +0100 @@ -132,10 +132,10 @@ apply (drule listall_conj2) apply (drule_tac i=i and j=j in subst_terms_NF) apply assumption - apply (rule_tac m=x and n=j in nat_eq_dec [THEN disjE, standard]) + apply (rule_tac m1=x and n1=j in nat_eq_dec [THEN disjE]) apply simp apply (erule NF.App) - apply (rule_tac m=j and n=x in nat_le_dec [THEN disjE, standard]) + apply (rule_tac m1=j and n1=x in nat_le_dec [THEN disjE]) apply simp apply (iprover intro: NF.App) apply simp @@ -173,7 +173,7 @@ apply (drule listall_conj2) apply (drule_tac i=i in lift_terms_NF) apply assumption - apply (rule_tac m=x and n=i in nat_le_dec [THEN disjE, standard]) + apply (rule_tac m1=x and n1=i in nat_le_dec [THEN disjE]) apply simp apply (rule NF.App) apply assumption diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Quotient_Examples/FSet.thy --- a/src/HOL/Quotient_Examples/FSet.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Quotient_Examples/FSet.thy Sun Nov 20 21:05:23 2011 +0100 @@ -649,8 +649,8 @@ subsection {* union_fset *} lemmas [simp] = - sup_bot_left[where 'a="'a fset", standard] - sup_bot_right[where 'a="'a fset", standard] + sup_bot_left[where 'a="'a fset"] + sup_bot_right[where 'a="'a fset"] lemma union_insert_fset [simp]: shows "insert_fset x S |\| T = insert_fset x (S |\| T)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/Quotient_Examples/Quotient_Int.thy --- a/src/HOL/Quotient_Examples/Quotient_Int.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/Quotient_Examples/Quotient_Int.thy Sun Nov 20 21:05:23 2011 +0100 @@ -263,11 +263,12 @@ qed lemmas int_distrib = - left_distrib [of "z1::int" "z2" "w", standard] - right_distrib [of "w::int" "z1" "z2", standard] - left_diff_distrib [of "z1::int" "z2" "w", standard] - right_diff_distrib [of "w::int" "z1" "z2", standard] - minus_add_distrib[of "z1::int" "z2", standard] + left_distrib [of z1 z2 w] + right_distrib [of w z1 z2] + left_diff_distrib [of z1 z2 w] + right_diff_distrib [of w z1 z2] + minus_add_distrib[of z1 z2] + for z1 z2 w :: int lemma int_induct_raw: assumes a: "P (0::nat, 0)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/SET_Protocol/Event_SET.thy --- a/src/HOL/SET_Protocol/Event_SET.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/SET_Protocol/Event_SET.thy Sun Nov 20 21:05:23 2011 +0100 @@ -82,7 +82,7 @@ (** Simplifying parts (insert X (knows Spy evs)) = parts {X} Un parts (knows Spy evs) -- since general case loops*) -lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard] +lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs lemma knows_Spy_Says [simp]: "knows Spy (Says A B X # evs) = insert X (knows Spy evs)" @@ -126,8 +126,8 @@ (*Use with addSEs to derive contradictions from old Says events containing items known to be fresh*) lemmas knows_Spy_partsEs = - Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard] - parts.Body [THEN revcut_rl, standard] + Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl] + parts.Body [THEN revcut_rl] subsection{*The Function @{term used}*} @@ -177,7 +177,7 @@ knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD] knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD] -lemmas analz_impI = impI [where P = "Y \ analz (knows Spy evs)", standard] +lemmas analz_impI = impI [where P = "Y \ analz (knows Spy evs)"] for Y evs ML {* diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/SET_Protocol/Message_SET.thy --- a/src/HOL/SET_Protocol/Message_SET.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/SET_Protocol/Message_SET.thy Sun Nov 20 21:05:23 2011 +0100 @@ -210,7 +210,7 @@ lemma parts_increasing: "H \ parts(H)" by blast -lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] +lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] lemma parts_empty [simp]: "parts{} = {}" apply safe @@ -424,9 +424,9 @@ apply (erule analz.induct, blast+) done -lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] +lemmas analz_into_parts = analz_subset_parts [THEN subsetD] -lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] +lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] lemma parts_analz [simp]: "parts (analz H) = parts H" @@ -440,7 +440,7 @@ apply (erule analz.induct, auto) done -lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] +lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] subsubsection{*General equational properties*} @@ -811,7 +811,7 @@ text{*Rewrites to push in Key and Crypt messages, so that other messages can be pulled out using the @{text analz_insert} rules*} -lemmas pushKeys [standard] = +lemmas pushKeys = insert_commute [of "Key K" "Agent C"] insert_commute [of "Key K" "Nonce N"] insert_commute [of "Key K" "Number N"] @@ -819,14 +819,16 @@ insert_commute [of "Key K" "Hash X"] insert_commute [of "Key K" "MPair X Y"] insert_commute [of "Key K" "Crypt X K'"] + for K C N PAN X Y K' -lemmas pushCrypts [standard] = +lemmas pushCrypts = insert_commute [of "Crypt X K" "Agent C"] insert_commute [of "Crypt X K" "Nonce N"] insert_commute [of "Crypt X K" "Number N"] insert_commute [of "Crypt X K" "Pan PAN"] insert_commute [of "Crypt X K" "Hash X'"] insert_commute [of "Crypt X K" "MPair X' Y"] + for X K C N PAN X' Y text{*Cannot be added with @{text "[simp]"} -- messages should not always be re-ordered.*} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/TLA/Memory/MemoryImplementation.thy --- a/src/HOL/TLA/Memory/MemoryImplementation.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/TLA/Memory/MemoryImplementation.thy Sun Nov 20 21:05:23 2011 +0100 @@ -819,7 +819,7 @@ apply force done (* turn into (unsafe, looping!) introduction rule *) -lemmas unchanged_safeI = impI [THEN unchanged_safe [action_use], standard] +lemmas unchanged_safeI = impI [THEN unchanged_safe [action_use]] lemma S1safe: "|- $S1 rmhist p & ImpNext p & [HNext rmhist p]_(c p,r p,m p, rmhist!p) --> [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/TLA/TLA.thy --- a/src/HOL/TLA/TLA.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/TLA/TLA.thy Sun Nov 20 21:05:23 2011 +0100 @@ -149,7 +149,7 @@ section "Simple temporal logic" (* []~F == []~Init F *) -lemmas boxNotInit = boxInit [of "LIFT ~F", unfolded Init_simps, standard] +lemmas boxNotInit = boxInit [of "LIFT ~F", unfolded Init_simps] for F lemma dmdInit: "TEMP <>F == TEMP <> Init F" apply (unfold dmd_def) @@ -157,15 +157,15 @@ apply (simp (no_asm) add: Init_simps) done -lemmas dmdNotInit = dmdInit [of "LIFT ~F", unfolded Init_simps, standard] +lemmas dmdNotInit = dmdInit [of "LIFT ~F", unfolded Init_simps] for F (* boxInit and dmdInit cannot be used as rewrites, because they loop. Non-looping instances for state predicates and actions are occasionally useful. *) -lemmas boxInit_stp = boxInit [where 'a = state, standard] -lemmas boxInit_act = boxInit [where 'a = "state * state", standard] -lemmas dmdInit_stp = dmdInit [where 'a = state, standard] -lemmas dmdInit_act = dmdInit [where 'a = "state * state", standard] +lemmas boxInit_stp = boxInit [where 'a = state] +lemmas boxInit_act = boxInit [where 'a = "state * state"] +lemmas dmdInit_stp = dmdInit [where 'a = state] +lemmas dmdInit_act = dmdInit [where 'a = "state * state"] (* The symmetric equations can be used to get rid of Init *) lemmas boxInitD = boxInit [symmetric] @@ -208,14 +208,14 @@ [| (sigma |= []F); (sigma |= [][]F) ==> PROP W |] ==> PROP W *) lemmas dup_boxE = STL3 [temp_unlift, THEN iffD2, elim_format] -lemmas dup_boxD = STL3 [temp_unlift, THEN iffD1, standard] +lemmas dup_boxD = STL3 [temp_unlift, THEN iffD1] (* dual versions for <> *) lemma DmdDmd: "|- (<><>F) = (<>F)" by (auto simp add: dmd_def [try_rewrite] STL3 [try_rewrite]) lemmas dup_dmdE = DmdDmd [temp_unlift, THEN iffD2, elim_format] -lemmas dup_dmdD = DmdDmd [temp_unlift, THEN iffD1, standard] +lemmas dup_dmdD = DmdDmd [temp_unlift, THEN iffD1] (* ------------------------ STL4 ------------------------------------------- *) @@ -266,7 +266,7 @@ done (* rewrite rule to split conjunctions under boxes *) -lemmas split_box_conj = STL5 [temp_unlift, symmetric, standard] +lemmas split_box_conj = STL5 [temp_unlift, symmetric] (* the corresponding elimination rule allows to combine boxes in the hypotheses @@ -283,9 +283,9 @@ (* Instances of box_conjE for state predicates, actions, and temporals in case the general rule is "too polymorphic". *) -lemmas box_conjE_temp = box_conjE [where 'a = behavior, standard] -lemmas box_conjE_stp = box_conjE [where 'a = state, standard] -lemmas box_conjE_act = box_conjE [where 'a = "state * state", standard] +lemmas box_conjE_temp = box_conjE [where 'a = behavior] +lemmas box_conjE_stp = box_conjE [where 'a = state] +lemmas box_conjE_act = box_conjE [where 'a = "state * state"] (* Define a tactic that tries to merge all boxes in an antecedent. The definition is a bit kludgy in order to simulate "double elim-resolution". @@ -318,7 +318,7 @@ (* rewrite rule to push universal quantification through box: (sigma |= [](! x. F x)) = (! x. (sigma |= []F x)) *) -lemmas all_box = allT [temp_unlift, symmetric, standard] +lemmas all_box = allT [temp_unlift, symmetric] lemma DmdOr: "|- (<>(F | G)) = (<>F | <>G)" apply (auto simp add: dmd_def split_box_conj [try_rewrite]) @@ -328,7 +328,7 @@ lemma exT: "|- (EX x. <>(F x)) = (<>(EX x. F x))" by (auto simp: dmd_def Not_Rex [try_rewrite] all_box [try_rewrite]) -lemmas ex_dmd = exT [temp_unlift, symmetric, standard] +lemmas ex_dmd = exT [temp_unlift, symmetric] lemma STL4Edup: "!!sigma. [| sigma |= []A; sigma |= []F; |- F & []A --> G |] ==> sigma |= []G" apply (erule dup_boxE) @@ -526,7 +526,7 @@ apply (fastforce elim!: TLA2E [temp_use]) done -lemmas PrimeDmd = InitDmd_gen [temp_use, THEN DmdPrime [temp_use], standard] +lemmas PrimeDmd = InitDmd_gen [temp_use, THEN DmdPrime [temp_use]] (* ------------------------ INV1, stable --------------------------------------- *) section "stable, invariant" @@ -541,8 +541,8 @@ lemma box_stp_act: "|- ([]$P) = ([]P)" by (simp add: boxInit_act Init_simps) -lemmas box_stp_actI = box_stp_act [temp_use, THEN iffD2, standard] -lemmas box_stp_actD = box_stp_act [temp_use, THEN iffD1, standard] +lemmas box_stp_actI = box_stp_act [temp_use, THEN iffD2] +lemmas box_stp_actD = box_stp_act [temp_use, THEN iffD1] lemmas more_temp_simps3 = box_stp_act [temp_rewrite] more_temp_simps2 @@ -710,7 +710,7 @@ done (* |- F & (F ~> G) --> <>G *) -lemmas leadsto_init_temp = leadsto_init [where 'a = behavior, unfolded Init_simps, standard] +lemmas leadsto_init_temp = leadsto_init [where 'a = behavior, unfolded Init_simps] lemma streett_leadsto: "|- ([]<>Init F --> []<>G) = (<>(F ~> G))" apply (unfold leadsto_def) @@ -776,8 +776,8 @@ elim!: STL4E_gen [temp_use] simp: Init_simps) done -lemmas ImplLeadsto = ImplLeadsto_gen [where 'a = behavior and 'b = behavior, - unfolded Init_simps, standard] +lemmas ImplLeadsto = + ImplLeadsto_gen [where 'a = behavior and 'b = behavior, unfolded Init_simps] lemma ImplLeadsto_simple: "!!F G. |- F --> G ==> |- F ~> G" by (auto simp: Init_def intro!: ImplLeadsto_gen [temp_use] necT [temp_use]) @@ -1065,7 +1065,7 @@ (* "wf r ==> |- <>[][ (v`, $v) : #r ]_v --> <>[][#False]_v" *) lemmas wf_not_dmd_box_decrease = - wf_not_box_decrease [THEN DmdImpl, unfolded more_temp_simps, standard] + wf_not_box_decrease [THEN DmdImpl, unfolded more_temp_simps] (* If there are infinitely many steps where v decreases, then there have to be infinitely many non-stuttering steps where v doesn't decrease. diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/Comp/Alloc.thy --- a/src/HOL/UNITY/Comp/Alloc.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/Comp/Alloc.thy Sun Nov 20 21:05:23 2011 +0100 @@ -791,7 +791,7 @@ done lemmas rename_guarantees_sysOfAlloc_I = - bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2, standard] + bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2] (*Lifting Alloc_Increasing up to the level of systemState*) @@ -867,7 +867,7 @@ text{*safety (1), step 2*} (* i < Nclients ==> System : Increasing (sub i o allocRel) *) -lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1, standard] +lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1] (*Lifting Alloc_safety up to the level of systemState. Simplifying with o_def gets rid of the translations but it unfortunately @@ -921,7 +921,7 @@ text{*progress (2), step 2; see also @{text System_Increasing_allocRel}*} (* i < Nclients ==> System : Increasing (sub i o allocAsk) *) -lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1, standard] +lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1] text{*progress (2), step 3: lifting @{text Client_Bounded} to systemState*} lemma rename_Client_Bounded: "i : I @@ -955,7 +955,7 @@ text{*progress (2), step 6*} (* i < Nclients ==> System : Increasing (giv o sub i o client) *) -lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1, standard] +lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1] lemma rename_Client_Progress: "i: I diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/Constrains.thy --- a/src/HOL/UNITY/Constrains.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/Constrains.thy Sun Nov 20 21:05:23 2011 +0100 @@ -86,8 +86,7 @@ (*F \ B co B' ==> F \ (reachable F \ B) co (reachable F \ B')*) lemmas constrains_reachable_Int = - subset_refl [THEN stable_reachable [unfolded stable_def], - THEN constrains_Int, standard] + subset_refl [THEN stable_reachable [unfolded stable_def], THEN constrains_Int] (*Resembles the previous definition of Constrains*) lemma Constrains_eq_constrains: @@ -263,8 +262,7 @@ apply (blast intro: stable_imp_Stable) done -lemmas Increasing_constant = - increasing_constant [THEN increasing_imp_Increasing, standard, iff] +lemmas Increasing_constant = increasing_constant [THEN increasing_imp_Increasing, iff] subsection{*The Elimination Theorem*} @@ -294,8 +292,8 @@ lemma AlwaysD: "F \ Always A ==> Init F \ A & F \ Stable A" by (simp add: Always_def) -lemmas AlwaysE = AlwaysD [THEN conjE, standard] -lemmas Always_imp_Stable = AlwaysD [THEN conjunct2, standard] +lemmas AlwaysE = AlwaysD [THEN conjE] +lemmas Always_imp_Stable = AlwaysD [THEN conjunct2] (*The set of all reachable states is Always*) @@ -312,8 +310,7 @@ apply (blast intro: constrains_imp_Constrains) done -lemmas Always_reachable = - invariant_reachable [THEN invariant_imp_Always, standard] +lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always] lemma Always_eq_invariant_reachable: "Always A = {F. F \ invariant (reachable F \ A)}" @@ -355,10 +352,10 @@ Constrains_eq_constrains Int_assoc [symmetric]) (* [| F \ Always INV; F \ (INV \ A) Co A' |] ==> F \ A Co A' *) -lemmas Always_ConstrainsI = Always_Constrains_pre [THEN iffD1, standard] +lemmas Always_ConstrainsI = Always_Constrains_pre [THEN iffD1] (* [| F \ Always INV; F \ A Co A' |] ==> F \ A Co (INV \ A') *) -lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2, standard] +lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2] (*The analogous proof of Always_LeadsTo_weaken doesn't terminate*) lemma Always_Constrains_weaken: @@ -390,7 +387,7 @@ (*Delete the nearest invariance assumption (which will be the second one used by Always_Int_I) *) -lemmas Always_thin = thin_rl [of "F \ Always A", standard] +lemmas Always_thin = thin_rl [of "F \ Always A"] subsection{*Totalize*} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/ELT.thy --- a/src/HOL/UNITY/ELT.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/ELT.thy Sun Nov 20 21:05:23 2011 +0100 @@ -418,7 +418,7 @@ apply (blast intro: subset_imp_leadsETo) done -lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo, standard] +lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo] lemma LeadsETo_weaken_R [rule_format]: "[| F : A LeadsTo[CC] A'; A' <= B' |] ==> F : A LeadsTo[CC] B'" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/Rename.thy --- a/src/HOL/UNITY/Rename.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/Rename.thy Sun Nov 20 21:05:23 2011 +0100 @@ -140,7 +140,7 @@ lemma bij_rename: "bij h ==> bij (rename h)" apply (simp (no_asm_simp) add: rename_def bij_extend) done -lemmas surj_rename = bij_rename [THEN bij_is_surj, standard] +lemmas surj_rename = bij_rename [THEN bij_is_surj] lemma inj_rename_imp_inj: "inj (rename h) ==> inj h" apply (unfold inj_on_def, auto) diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/Simple/Reachability.thy --- a/src/HOL/UNITY/Simple/Reachability.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/Simple/Reachability.thy Sun Nov 20 21:05:23 2011 +0100 @@ -69,8 +69,8 @@ MA7: "[|v \ V;w \ V|] ==> F \ UNIV LeadsTo nmsg_eq 0 (v,w)" -lemmas E_imp_in_V_L = Graph2 [THEN conjunct1, standard] -lemmas E_imp_in_V_R = Graph2 [THEN conjunct2, standard] +lemmas E_imp_in_V_L = Graph2 [THEN conjunct1] +lemmas E_imp_in_V_R = Graph2 [THEN conjunct2] lemma lemma2: "(v,w) \ E ==> F \ reachable v LeadsTo nmsg_eq 0 (v,w) \ reachable v" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/SubstAx.thy --- a/src/HOL/UNITY/SubstAx.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/SubstAx.thy Sun Nov 20 21:05:23 2011 +0100 @@ -42,10 +42,10 @@ Int_assoc [symmetric]) (* [| F \ Always C; F \ (C \ A) LeadsTo A' |] ==> F \ A LeadsTo A' *) -lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1, standard] +lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1] (* [| F \ Always INV; F \ A LeadsTo A' |] ==> F \ A LeadsTo (INV \ A') *) -lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2, standard] +lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2] subsection{*Introduction rules: Basis, Trans, Union*} @@ -104,7 +104,7 @@ apply (blast intro: subset_imp_leadsTo) done -lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, standard, simp] +lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp] lemma LeadsTo_weaken_R: "[| F \ A LeadsTo A'; A' \ B' |] ==> F \ A LeadsTo B'" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/UNITY.thy --- a/src/HOL/UNITY/UNITY.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/UNITY.thy Sun Nov 20 21:05:23 2011 +0100 @@ -274,7 +274,7 @@ by (unfold stable_def constrains_def, blast) (*[| F \ stable C; F \ (C \ A) co A |] ==> F \ stable (C \ A) *) -lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI, standard] +lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI] subsubsection{*invariant*} diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/Union.thy --- a/src/HOL/UNITY/Union.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/Union.thy Sun Nov 20 21:05:23 2011 +0100 @@ -332,7 +332,7 @@ lemma ok_commute: "(F ok G) = (G ok F)" by (auto simp add: ok_def) -lemmas ok_sym = ok_commute [THEN iffD1, standard] +lemmas ok_sym = ok_commute [THEN iffD1] lemma ok_iff_OK: "OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\G) ok H)" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/WFair.thy --- a/src/HOL/UNITY/WFair.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/WFair.thy Sun Nov 20 21:05:23 2011 +0100 @@ -235,13 +235,13 @@ lemma subset_imp_ensures: "A \ B ==> F \ A ensures B" by (unfold ensures_def constrains_def transient_def, blast) -lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis, standard] +lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis] -lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo, standard] +lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo] -lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, standard, simp] +lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp] -lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, standard, simp] +lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp] diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/ex/Gauge_Integration.thy --- a/src/HOL/ex/Gauge_Integration.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/ex/Gauge_Integration.thy Sun Nov 20 21:05:23 2011 +0100 @@ -45,7 +45,7 @@ \ fine \ (a, c) ((a, x, b) # D)" lemmas fine_induct [induct set: fine] = - fine.induct [of "\" "(a,b)" "D" "split P", unfolded split_conv, standard] + fine.induct [of "\" "(a,b)" "D" "split P", unfolded split_conv] for \ a b D P lemma fine_single: "\a < b; a \ x; x \ b; b - a < \ x\ \ fine \ (a, b) [(a, x, b)]" diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/ex/Tree23.thy --- a/src/HOL/ex/Tree23.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/ex/Tree23.thy Sun Nov 20 21:05:23 2011 +0100 @@ -330,12 +330,13 @@ "dfull n (Some (p, (False, t'))) \ full (Suc n) t'" lemmas dfull_case_intros = - ord.exhaust [where y=y and P="dfull a (ord_case b c d y)", standard] - option.exhaust [where y=y and P="dfull a (option_case b c y)", standard] - prod.exhaust [where y=y and P="dfull a (prod_case b y)", standard] - bool.exhaust [where y=y and P="dfull a (bool_case b c y)", standard] - tree23.exhaust [where y=y and P="dfull a (Some (b, tree23_case c d e y))", standard] - tree23.exhaust [where y=y and P="full a (tree23_case b c d y)", standard] + ord.exhaust [where y=y and P="dfull a (ord_case b c d y)"] + option.exhaust [where y=y and P="dfull a (option_case b c y)"] + prod.exhaust [where y=y and P="dfull a (prod_case b y)"] + bool.exhaust [where y=y and P="dfull a (bool_case b c y)"] + tree23.exhaust [where y=y and P="dfull a (Some (b, tree23_case c d e y))"] + tree23.exhaust [where y=y and P="full a (tree23_case b c d y)"] + for a b c d e y lemma dfull_del: "full (Suc n) t \ dfull n (del k t)" proof -