# HG changeset patch # User berghofe # Date 1210150600 -7200 # Node ID a9134a089106863342cd2e782df27493c3dcd0da # Parent a6cb51c314f2ab56125e2b58eeddc3a250927b27 split_beta is now declared as monotonicity rule, to allow bounded quantifiers in introduction rules of inductive predicates. diff -r a6cb51c314f2 -r a9134a089106 src/HOL/Product_Type.thy --- a/src/HOL/Product_Type.thy Wed May 07 10:56:39 2008 +0200 +++ b/src/HOL/Product_Type.thy Wed May 07 10:56:40 2008 +0200 @@ -476,7 +476,7 @@ Addsimprocs [split_beta_proc, split_eta_proc]; *} -lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)" +lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)" by (subst surjective_pairing, rule split_conv) lemma split_split [noatp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"