# HG changeset patch # User nipkow # Date 1290791208 -3600 # Node ID a92d744bca5f840a834a23cf4b0f7f3427c1c1ea # Parent ed0add6f69a7b90f27e3b95cc8dce1201ea47dd0 new lemma diff -r ed0add6f69a7 -r a92d744bca5f src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Fri Nov 26 14:19:16 2010 +0100 +++ b/src/HOL/Finite_Set.thy Fri Nov 26 18:06:48 2010 +0100 @@ -2009,6 +2009,15 @@ by (simp add: card_Diff_subset AB) qed +lemma diff_card_le_card_Diff: +assumes "finite B" shows "card A - card B \ card(A - B)" +proof- + have "card A - card B \ card A - card (A \ B)" + using card_mono[OF assms Int_lower2, of A] by arith + also have "\ = card(A-B)" using assms by(simp add: card_Diff_subset_Int) + finally show ?thesis . +qed + lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" apply (rule Suc_less_SucD) apply (simp add: card_Suc_Diff1 del:card_Diff_insert)