# HG changeset patch # User huffman # Date 1315411378 25200 # Node ID a92f65e174cf3aa7d1f9490cfe102497455a0b48 # Parent e0da66339e472045450d41508bba1b57b04221c9 avoid using legacy theorem names diff -r e0da66339e47 -r a92f65e174cf src/HOL/Algebra/IntRing.thy --- a/src/HOL/Algebra/IntRing.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Algebra/IntRing.thy Wed Sep 07 09:02:58 2011 -0700 @@ -35,8 +35,8 @@ apply (rule abelian_groupI, simp_all) defer 1 apply (rule comm_monoidI, simp_all) - apply (rule zadd_zmult_distrib) -apply (fast intro: zadd_zminus_inverse2) + apply (rule left_distrib) +apply (fast intro: left_minus) done (* @@ -298,7 +298,7 @@ from this obtain x where "1 = x * p" by best from this [symmetric] - have "p * x = 1" by (subst zmult_commute) + have "p * x = 1" by (subst mult_commute) hence "\p * x\ = 1" by simp hence "\p\ = 1" by (rule abs_zmult_eq_1) from this and prime diff -r e0da66339e47 -r a92f65e174cf src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Algebra/UnivPoly.thy Wed Sep 07 09:02:58 2011 -0700 @@ -1818,7 +1818,7 @@ lemma INTEG_cring: "cring INTEG" by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI - zadd_zminus_inverse2 zadd_zmult_distrib) + left_minus left_distrib) lemma INTEG_id_eval: "UP_pre_univ_prop INTEG INTEG id" diff -r e0da66339e47 -r a92f65e174cf src/HOL/Boogie/Examples/Boogie_Max_Stepwise.thy --- a/src/HOL/Boogie/Examples/Boogie_Max_Stepwise.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Boogie/Examples/Boogie_Max_Stepwise.thy Wed Sep 07 09:02:58 2011 -0700 @@ -77,10 +77,10 @@ boogie_vc max (examine: L_14_5c L_14_5b L_14_5a) proof boogie_cases case L_14_5c - thus ?case by (metis less_le_not_le zle_add1_eq_le zless_linear) + thus ?case by (metis less_le_not_le zle_add1_eq_le less_linear) next case L_14_5b - thus ?case by (metis less_le_not_le xt1(10) zle_linear zless_add1_eq) + thus ?case by (metis less_le_not_le xt1(10) linorder_linear zless_add1_eq) next case L_14_5a note max0 = `max0 = array 0` diff -r e0da66339e47 -r a92f65e174cf src/HOL/Code_Numeral.thy --- a/src/HOL/Code_Numeral.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Code_Numeral.thy Wed Sep 07 09:02:58 2011 -0700 @@ -274,7 +274,7 @@ then have "int ((nat_of k div 2) * 2 + nat_of k mod 2) = int (nat_of k)" by simp then have "int (nat_of k) = int (nat_of k div 2) * 2 + int (nat_of k mod 2)" - unfolding int_mult zadd_int [symmetric] by simp + unfolding of_nat_mult of_nat_add by simp then show ?thesis by (auto simp add: int_of_def mult_ac) qed diff -r e0da66339e47 -r a92f65e174cf src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Decision_Procs/Approximation.thy Wed Sep 07 09:02:58 2011 -0700 @@ -295,7 +295,7 @@ unfolding real_sqrt_mult[of _ "pow2 (?E mod 2)"] real_sqrt_abs2 by auto also have "\ < pow2 (?E div 2) * 2" by (rule mult_strict_left_mono, auto intro: E_mod_pow) - also have "\ = pow2 (?E div 2 + 1)" unfolding zadd_commute[of _ 1] pow2_add1 by auto + also have "\ = pow2 (?E div 2 + 1)" unfolding add_commute[of _ 1] pow2_add1 by auto finally show ?thesis by auto qed finally show ?thesis diff -r e0da66339e47 -r a92f65e174cf src/HOL/Decision_Procs/Cooper.thy --- a/src/HOL/Decision_Procs/Cooper.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Decision_Procs/Cooper.thy Wed Sep 07 09:02:58 2011 -0700 @@ -1318,7 +1318,7 @@ also have "\ = (j dvd (- (c*x - ?e)))" by (simp only: dvd_minus_iff) also have "\ = (j dvd (c* (- x)) + ?e)" - apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus zadd_ac zminus_zadd_distrib) + apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib) by (simp add: algebra_simps) also have "\ = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))" using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] @@ -1330,7 +1330,7 @@ also have "\ = (j dvd (- (c*x - ?e)))" by (simp only: dvd_minus_iff) also have "\ = (j dvd (c* (- x)) + ?e)" - apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus zadd_ac zminus_zadd_distrib) + apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib) by (simp add: algebra_simps) also have "\ = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))" using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] diff -r e0da66339e47 -r a92f65e174cf src/HOL/GCD.thy --- a/src/HOL/GCD.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/GCD.thy Wed Sep 07 09:02:58 2011 -0700 @@ -485,16 +485,16 @@ done lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n" -by (metis gcd_red_int mod_add_self1 zadd_commute) +by (metis gcd_red_int mod_add_self1 add_commute) lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n" -by (metis gcd_add1_int gcd_commute_int zadd_commute) +by (metis gcd_add1_int gcd_commute_int add_commute) lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n" by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat) lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n" -by (metis gcd_commute_int gcd_red_int mod_mult_self1 zadd_commute) +by (metis gcd_commute_int gcd_red_int mod_mult_self1 add_commute) (* to do: differences, and all variations of addition rules @@ -1030,8 +1030,7 @@ apply (subst mod_div_equality [of m n, symmetric]) (* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *) - apply (simp only: field_simps zadd_int [symmetric] - zmult_int [symmetric]) + apply (simp only: field_simps of_nat_add of_nat_mult) done qed @@ -1237,7 +1236,7 @@ lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b" by (simp add: lcm_int_def lcm_nat_def zdiv_int - zmult_int [symmetric] gcd_int_def) + of_nat_mult gcd_int_def) lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n" unfolding lcm_nat_def diff -r e0da66339e47 -r a92f65e174cf src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Wed Sep 07 09:02:58 2011 -0700 @@ -93,7 +93,7 @@ have even_minus_odd:"\x y. even x \ odd (y::int) \ odd (x - y)" using assms by auto have odd_minus_even:"\x y. odd x \ even (y::int) \ odd (x - y)" using assms by auto show ?thesis unfolding even_nat_def unfolding card_eq_setsum and lem4[THEN sym] and *[unfolded card_eq_setsum] - unfolding card_eq_setsum[THEN sym] apply (rule odd_minus_even) unfolding zadd_int[THEN sym] apply(rule odd_plus_even) + unfolding card_eq_setsum[THEN sym] apply (rule odd_minus_even) unfolding of_nat_add apply(rule odd_plus_even) apply(rule assms(7)[unfolded even_nat_def]) unfolding int_mult by auto qed subsection {* The odd/even result for faces of complete vertices, generalized. *} diff -r e0da66339e47 -r a92f65e174cf src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Sep 07 09:02:58 2011 -0700 @@ -4590,7 +4590,7 @@ hence "b : affine hull S1" using rel_interior_subset hull_subset[of S2] ** by auto hence "b : S1" using T_def b_def by auto hence False using b_def assms unfolding rel_frontier_def by auto -} ultimately show ?thesis using zless_le by auto +} ultimately show ?thesis using less_le by auto qed diff -r e0da66339e47 -r a92f65e174cf src/HOL/Number_Theory/Primes.thy --- a/src/HOL/Number_Theory/Primes.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Number_Theory/Primes.thy Wed Sep 07 09:02:58 2011 -0700 @@ -174,7 +174,7 @@ EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n" unfolding prime_int_altdef dvd_def apply auto - by(metis div_mult_self1_is_id div_mult_self2_is_id int_div_less_self int_one_le_iff_zero_less zero_less_mult_pos zless_le) + by(metis div_mult_self1_is_id div_mult_self2_is_id int_div_less_self int_one_le_iff_zero_less zero_less_mult_pos less_le) lemma prime_dvd_power_nat [rule_format]: "prime (p::nat) --> n > 0 --> (p dvd x^n --> p dvd x)" @@ -220,7 +220,7 @@ "prime (p::int) \ p > 1 \ (\n \ {1<.. prime q \ p \ q \ coprime p q" apply (rule prime_imp_coprime_int, assumption) apply (unfold prime_int_altdef) - apply (metis int_one_le_iff_zero_less zless_le) + apply (metis int_one_le_iff_zero_less less_le) done lemma primes_imp_powers_coprime_nat: "prime (p::nat) \ prime q \ p ~= q \ coprime (p^m) (q^n)" diff -r e0da66339e47 -r a92f65e174cf src/HOL/Number_Theory/UniqueFactorization.thy --- a/src/HOL/Number_Theory/UniqueFactorization.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Number_Theory/UniqueFactorization.thy Wed Sep 07 09:02:58 2011 -0700 @@ -766,7 +766,7 @@ lemma multiplicity_dvd'_int: "(0::int) < x \ 0 <= y \ \p. prime p \ multiplicity p x \ multiplicity p y \ x dvd y" by (metis eq_imp_le gcd_lcm_complete_lattice_nat.top_greatest int_eq_0_conv multiplicity_dvd_int - multiplicity_nonprime_int nat_int transfer_nat_int_relations(4) zless_le) + multiplicity_nonprime_int nat_int transfer_nat_int_relations(4) less_le) lemma dvd_multiplicity_eq_nat: "0 < (x::nat) \ 0 < y \ (x dvd y) = (ALL p. multiplicity p x <= multiplicity p y)" diff -r e0da66339e47 -r a92f65e174cf src/HOL/Old_Number_Theory/Fib.thy --- a/src/HOL/Old_Number_Theory/Fib.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Old_Number_Theory/Fib.thy Wed Sep 07 09:02:58 2011 -0700 @@ -87,7 +87,7 @@ else fib (Suc n) * fib (Suc n) + 1)" apply (rule int_int_eq [THEN iffD1]) apply (simp add: fib_Cassini_int) - apply (subst zdiff_int [symmetric]) + apply (subst of_nat_diff) apply (insert fib_Suc_gr_0 [of n], simp_all) done diff -r e0da66339e47 -r a92f65e174cf src/HOL/Old_Number_Theory/Legacy_GCD.thy --- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Wed Sep 07 09:02:58 2011 -0700 @@ -699,7 +699,7 @@ lemma zgcd_zmult_distrib2: "0 \ k ==> k * zgcd m n = zgcd (k * m) (k * n)" by (simp del: minus_mult_right [symmetric] add: minus_mult_right nat_mult_distrib zgcd_def abs_if - mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric]) + mult_less_0_iff gcd_mult_distrib2 [symmetric] of_nat_mult) lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n" by (simp add: abs_if zgcd_zmult_distrib2) diff -r e0da66339e47 -r a92f65e174cf src/HOL/Old_Number_Theory/WilsonRuss.thy --- a/src/HOL/Old_Number_Theory/WilsonRuss.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Old_Number_Theory/WilsonRuss.thy Wed Sep 07 09:02:58 2011 -0700 @@ -122,7 +122,7 @@ lemma inv_inv_aux: "5 \ p ==> nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))" apply (subst int_int_eq [symmetric]) - apply (simp add: zmult_int [symmetric]) + apply (simp add: of_nat_mult) apply (simp add: left_diff_distrib right_diff_distrib) done diff -r e0da66339e47 -r a92f65e174cf src/HOL/Word/Misc_Numeric.thy --- a/src/HOL/Word/Misc_Numeric.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Word/Misc_Numeric.thy Wed Sep 07 09:02:58 2011 -0700 @@ -312,7 +312,7 @@ apply safe apply (simp add: dvd_eq_mod_eq_0 [symmetric]) apply (drule le_iff_add [THEN iffD1]) - apply (force simp: zpower_zadd_distrib) + apply (force simp: power_add) apply (rule mod_pos_pos_trivial) apply (simp) apply (rule power_strict_increasing) diff -r e0da66339e47 -r a92f65e174cf src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Word/Word.thy Wed Sep 07 09:02:58 2011 -0700 @@ -1257,7 +1257,7 @@ word_of_int_Ex [of b] word_of_int_Ex [of c] by (auto simp: word_of_int_hom_syms [symmetric] - zadd_0_right add_commute add_assoc add_left_commute + add_0_right add_commute add_assoc add_left_commute mult_commute mult_assoc mult_left_commute left_distrib right_distrib) @@ -4219,7 +4219,7 @@ apply (rule rotater_eqs) apply (simp add: word_size nat_mod_distrib) apply (rule int_eq_0_conv [THEN iffD1]) - apply (simp only: zmod_int zadd_int [symmetric]) + apply (simp only: zmod_int of_nat_add) apply (simp add: rdmods) done