# HG changeset patch # User wenzelm # Date 1463163850 -7200 # Node ID a949b2a5f51d01bebe1d00d2144f7dfc17d5cd1b # Parent 54f16a0a30690d187449141f233c1d639d2a23f0 eliminated use of empty "assms"; diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/BNF_Def.thy --- a/src/HOL/BNF_Def.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/BNF_Def.thy Fri May 13 20:24:10 2016 +0200 @@ -248,7 +248,7 @@ by (simp add: eq_onp_def) lemma eq_onp_same_args: "eq_onp P x x = P x" - using assms by (auto simp add: eq_onp_def) + by (auto simp add: eq_onp_def) lemma eq_onp_eqD: "eq_onp P = Q \ P x = Q x x" unfolding eq_onp_def by blast diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/BNF_Wellorder_Constructions.thy --- a/src/HOL/BNF_Wellorder_Constructions.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/BNF_Wellorder_Constructions.thy Fri May 13 20:24:10 2016 +0200 @@ -570,7 +570,7 @@ lemma not_ordLess_ordIso: "r \ r =o r'" -using assms ordLess_ordIso_trans ordIso_symmetric ordLess_irreflexive by blast +using ordLess_ordIso_trans ordIso_symmetric ordLess_irreflexive by blast lemma not_ordLeq_iff_ordLess: assumes WELL: "Well_order r" and WELL': "Well_order r'" @@ -584,7 +584,7 @@ lemma ordLess_transitive[trans]: "\r \ r Well_order r; inj_on f (Field r)\ \ Well_order (dir_image r f)" -using assms unfolding well_order_on_def +unfolding well_order_on_def using Linear_order_dir_image[of r f] wf_dir_image[of "r - Id" f] dir_image_minus_Id[of f r] subset_inj_on[of f "Field r" "Field(r - Id)"] diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/BNF_Wellorder_Embedding.thy --- a/src/HOL/BNF_Wellorder_Embedding.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/BNF_Wellorder_Embedding.thy Fri May 13 20:24:10 2016 +0200 @@ -986,7 +986,7 @@ lemma iso_Field: "iso r r' f \ f ` (Field r) = Field r'" -using assms by (auto simp add: iso_def bij_betw_def) +by (auto simp add: iso_def bij_betw_def) lemma iso_iff: assumes "Well_order r" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Binomial.thy --- a/src/HOL/Binomial.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Binomial.thy Fri May 13 20:24:10 2016 +0200 @@ -1324,7 +1324,7 @@ proof - have "((m+r+k) choose (m+k)) * ((m+k) choose k) = fact (m+r + k) div (fact (m + k) * fact (m+r - m)) * (fact (m + k) div (fact k * fact m))" - by (simp add: assms binomial_altdef_nat) + by (simp add: binomial_altdef_nat) also have "... = fact (m+r+k) div (fact r * (fact k * fact m))" apply (subst div_mult_div_if_dvd) apply (auto simp: algebra_simps fact_fact_dvd_fact) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Cardinals/Cardinal_Order_Relation.thy --- a/src/HOL/Cardinals/Cardinal_Order_Relation.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Cardinals/Cardinal_Order_Relation.thy Fri May 13 20:24:10 2016 +0200 @@ -1105,7 +1105,7 @@ proof(auto simp add: natLeq_on_Well_order ordIso_reflexive) assume "natLeq_on m =o natLeq_on n" then obtain f where "bij_betw f {x. x x \ A \ f x \ u \ INFIMUM A f \ u" - by (auto intro: cINF_lower assms order_trans) + by (auto intro: cINF_lower order_trans) lemma cSUP_upper2: "bdd_above (f ` A) \ x \ A \ u \ f x \ u \ SUPREMUM A f" - by (auto intro: cSUP_upper assms order_trans) + by (auto intro: cSUP_upper order_trans) lemma cSUP_const [simp]: "A \ {} \ (SUP x:A. c) = c" by (intro antisym cSUP_least) (auto intro: cSUP_upper) @@ -309,10 +309,10 @@ by (intro antisym cINF_greatest) (auto intro: cINF_lower) lemma le_cINF_iff: "A \ {} \ bdd_below (f ` A) \ u \ INFIMUM A f \ (\x\A. u \ f x)" - by (metis cINF_greatest cINF_lower assms order_trans) + by (metis cINF_greatest cINF_lower order_trans) lemma cSUP_le_iff: "A \ {} \ bdd_above (f ` A) \ SUPREMUM A f \ u \ (\x\A. f x \ u)" - by (metis cSUP_least cSUP_upper assms order_trans) + by (metis cSUP_least cSUP_upper order_trans) lemma less_cINF_D: "bdd_below (f`A) \ y < (INF i:A. f i) \ i \ A \ y < f i" by (metis cINF_lower less_le_trans) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Deriv.thy Fri May 13 20:24:10 2016 +0200 @@ -89,7 +89,7 @@ lemma (in bounded_linear) has_derivative: "(g has_derivative g') F \ ((\x. f (g x)) has_derivative (\x. f (g' x))) F" - using assms unfolding has_derivative_def + unfolding has_derivative_def apply safe apply (erule bounded_linear_compose [OF bounded_linear]) apply (drule tendsto) @@ -537,7 +537,7 @@ lemma differentiable_divide [simp, derivative_intros]: fixes f g :: "'a :: real_normed_vector \ 'b :: real_normed_field" shows "f differentiable (at x within s) \ g differentiable (at x within s) \ g x \ 0 \ (\x. f x / g x) differentiable (at x within s)" - unfolding divide_inverse using assms by simp + unfolding divide_inverse by simp lemma differentiable_power [simp, derivative_intros]: fixes f g :: "'a :: real_normed_vector \ 'b :: real_normed_field" @@ -742,7 +742,7 @@ lemma field_differentiable_diff[derivative_intros]: "(f has_field_derivative f') F \ (g has_field_derivative g') F \ ((\z. f z - g z) has_field_derivative f' - g') F" - by (simp only: assms diff_conv_add_uminus field_differentiable_add field_differentiable_minus) + by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus) corollary DERIV_diff: "(f has_field_derivative D) (at x within s) \ (g has_field_derivative E) (at x within s) \ diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Equiv_Relations.thy --- a/src/HOL/Equiv_Relations.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Equiv_Relations.thy Fri May 13 20:24:10 2016 +0200 @@ -266,7 +266,7 @@ lemma congruent2D: "congruent2 r1 r2 f \ (y1, z1) \ r1 \ (y2, z2) \ r2 \ f y1 y2 = f z1 z2" - using assms by (auto simp add: congruent2_def) + by (auto simp add: congruent2_def) text\Abbreviation for the common case where the relations are identical\ abbreviation @@ -426,7 +426,7 @@ lemma in_quotient_imp_subset: "\equiv A r; X \ A//r\ \ X \ A" -using assms in_quotient_imp_in_rel equiv_type by fastforce +using in_quotient_imp_in_rel equiv_type by fastforce subsection \Equivalence relations -- predicate version\ diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Groups_Big.thy Fri May 13 20:24:10 2016 +0200 @@ -181,7 +181,7 @@ lemma distrib: "F (\x. g x * h x) A = F g A * F h A" - using assms by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute) + by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute) lemma Sigma: "finite A \ \x\A. finite (B x) \ F (\x. F (g x) (B x)) A = F (case_prod g) (SIGMA x:A. B x)" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Imperative_HOL/ex/Linked_Lists.thy --- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Fri May 13 20:24:10 2016 +0200 @@ -261,7 +261,6 @@ subsection {* Interaction of these predicates with our heap transitions *} lemma list_of_set_ref: "refs_of h q rs \ p \ set rs \ list_of (Ref.set p v h) q as = list_of h q as" -using assms proof (induct as arbitrary: q rs) case Nil thus ?case by simp next diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Complete_Partial_Order2.thy --- a/src/HOL/Library/Complete_Partial_Order2.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Complete_Partial_Order2.thy Fri May 13 20:24:10 2016 +0200 @@ -1552,7 +1552,7 @@ lemma mcont_SUP [cont_intro, simp]: "\ mcont lub ord Union op \ f; \y. mcont lub ord Sup op \ (\x. g x y) \ \ mcont lub ord Sup op \ (\x. \y\f x. g x y)" -by(blast intro: mcontI cont_SUP[OF assms] monotone_SUP mcont_mono) +by(blast intro: mcontI cont_SUP monotone_SUP mcont_mono) end diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/ContNotDenum.thy --- a/src/HOL/Library/ContNotDenum.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/ContNotDenum.thy Fri May 13 20:24:10 2016 +0200 @@ -37,7 +37,6 @@ txt \First we construct a sequence of nested intervals, ignoring @{term "range f"}.\ have "\a b c::real. a < b \ (\ka kb. ka < kb \ {ka..kb} \ {a..b} \ c \ {ka..kb})" - using assms by (auto simp add: not_le cong: conj_cong) (metis dense le_less_linear less_linear less_trans order_refl) then obtain i j where ij: diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Convex.thy --- a/src/HOL/Library/Convex.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Convex.thy Fri May 13 20:24:10 2016 +0200 @@ -533,7 +533,7 @@ by (auto simp: add_pos_pos) } ultimately show "(1 - \) *\<^sub>R y + \ *\<^sub>R x > 0" - using assms by fastforce + by fastforce qed lemma convex_on_setsum: diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Countable_Set.thy Fri May 13 20:24:10 2016 +0200 @@ -228,7 +228,7 @@ by auto (metis Diff_insert_absorb countable_Diff insert_absorb) lemma countable_vimage: "B \ range f \ countable (f -` B) \ countable B" - by (metis Int_absorb2 assms countable_image image_vimage_eq) + by (metis Int_absorb2 countable_image image_vimage_eq) lemma surj_countable_vimage: "surj f \ countable (f -` B) \ countable B" by (metis countable_vimage top_greatest) @@ -342,7 +342,7 @@ lemma uncountable_minus_countable: "uncountable A \ countable B \ uncountable (A - B)" - using countable_Un[of B "A - B"] assms by auto + using countable_Un[of B "A - B"] by auto lemma countable_Diff_eq [simp]: "countable (A - {x}) = countable A" by (meson countable_Diff countable_empty countable_insert uncountable_minus_countable) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Extended_Real.thy Fri May 13 20:24:10 2016 +0200 @@ -281,7 +281,7 @@ obtains (real) r where "x = ereal r" | (PInf) "x = \" | (MInf) "x = -\" - using assms by (cases x) auto + by (cases x) auto lemmas ereal2_cases = ereal_cases[case_product ereal_cases] lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] @@ -1009,7 +1009,6 @@ lemma ereal_mult_right_mono: fixes a b c :: ereal shows "a \ b \ 0 \ c \ a * c \ b * c" - using assms apply (cases "c = 0") apply simp apply (cases rule: ereal3_cases[of a b c]) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/FSet.thy --- a/src/HOL/Library/FSet.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/FSet.thy Fri May 13 20:24:10 2016 +0200 @@ -855,7 +855,7 @@ lemma bind_transfer [transfer_rule]: "(rel_fset A ===> (A ===> rel_fset B) ===> rel_fset B) fbind fbind" - using assms unfolding rel_fun_def + unfolding rel_fun_def using bind_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast text \Rules requiring bi-unique, bi-total or right-total relations\ @@ -885,7 +885,7 @@ lemma fSup_transfer [transfer_rule]: "bi_unique A \ (rel_set (rel_fset A) ===> rel_fset A) Sup Sup" - using assms unfolding rel_fun_def + unfolding rel_fun_def apply clarify apply transfer' using Sup_fset_transfer[unfolded rel_fun_def] by blast @@ -908,7 +908,7 @@ lemma card_transfer [transfer_rule]: "bi_unique A \ (rel_fset A ===> op =) fcard fcard" - using assms unfolding rel_fun_def + unfolding rel_fun_def using card_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast end diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Fraction_Field.thy --- a/src/HOL/Library/Fraction_Field.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Fraction_Field.thy Fri May 13 20:24:10 2016 +0200 @@ -278,7 +278,7 @@ lemma less_fract [simp]: "\ b \ 0; d \ 0 \ \ Fract a b < Fract c d \ (a * d) * (b * d) < (c * b) * (b * d)" - by (simp add: less_fract_def less_le_not_le ac_simps assms) + by (simp add: less_fract_def less_le_not_le ac_simps) instance proof diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/FuncSet.thy --- a/src/HOL/Library/FuncSet.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/FuncSet.thy Fri May 13 20:24:10 2016 +0200 @@ -402,17 +402,17 @@ proof - { fix f assume "f \ PiE (insert x S) T" "x \ S" - with assms have "f \ (\(y, g). g(x := y)) ` (T x \ PiE S T)" + then have "f \ (\(y, g). g(x := y)) ` (T x \ PiE S T)" by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) } moreover { fix f assume "f \ PiE (insert x S) T" "x \ S" - with assms have "f \ (\(y, g). g(x := y)) ` (T x \ PiE S T)" + then have "f \ (\(y, g). g(x := y)) ` (T x \ PiE S T)" by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) } ultimately show ?thesis - using assms by (auto intro: PiE_fun_upd) + by (auto intro: PiE_fun_upd) qed lemma PiE_Int: "Pi\<^sub>E I A \ Pi\<^sub>E I B = Pi\<^sub>E I (\x. A x \ B x)" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Indicator_Function.thy --- a/src/HOL/Library/Indicator_Function.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Indicator_Function.thy Fri May 13 20:24:10 2016 +0200 @@ -79,7 +79,7 @@ lemma setsum_indicator_scaleR[simp]: "finite A \ (\x \ A. indicator (B x) (g x) *\<^sub>R f x) = (\x \ {x\A. g x \ B x}. f x::'a::real_vector)" - using assms by (auto intro!: setsum.mono_neutral_cong_right split: if_split_asm simp: indicator_def) + by (auto intro!: setsum.mono_neutral_cong_right split: if_split_asm simp: indicator_def) lemma LIMSEQ_indicator_incseq: assumes "incseq A" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Multiset.thy Fri May 13 20:24:10 2016 +0200 @@ -967,7 +967,7 @@ lemma multiset_cases [cases type]: obtains (empty) "M = {#}" | (add) N x where "M = N + {#x#}" - using assms by (induct M) simp_all + by (induct M) simp_all lemma multi_drop_mem_not_eq: "c \# B \ B - {#c#} \ B" by (cases "B = {#}") (auto dest: multi_member_split) @@ -1455,7 +1455,7 @@ by (induct n, simp_all) lemma count_le_replicate_mset_le: "n \ count M x \ replicate_mset n x \# M" - by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset subseteq_mset_def) + by (auto simp add: mset_less_eqI) (metis count_replicate_mset subseteq_mset_def) lemma filter_eq_replicate_mset: "{#y \# D. y = x#} = replicate_mset (count D x) x" by (induct D) simp_all diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Library/Nonpos_Ints.thy --- a/src/HOL/Library/Nonpos_Ints.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Library/Nonpos_Ints.thy Fri May 13 20:24:10 2016 +0200 @@ -54,7 +54,7 @@ lemma nonpos_IntsI: "x \ \ \ x \ 0 \ (x :: 'a :: linordered_idom) \ \\<^sub>\\<^sub>0" - using assms unfolding nonpos_Ints_def Ints_def by auto + unfolding nonpos_Ints_def Ints_def by auto lemma nonpos_Ints_subset_Ints: "\\<^sub>\\<^sub>0 \ \" unfolding nonpos_Ints_def Ints_def by blast diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Lifting.thy --- a/src/HOL/Lifting.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Lifting.thy Fri May 13 20:24:10 2016 +0200 @@ -311,7 +311,7 @@ using 1 2 unfolding Quotient_alt_def reflp_def rel_fun_def by simp lemma Quotient_total_abs_induct: "(\y. P (Abs y)) \ P x" - using 1 2 assms unfolding Quotient_alt_def reflp_def by metis + using 1 2 unfolding Quotient_alt_def reflp_def by metis lemma Quotient_total_abs_eq_iff: "Abs x = Abs y \ R x y" using Quotient_rel [OF 1] 2 unfolding reflp_def by simp diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/List.thy --- a/src/HOL/List.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/List.thy Fri May 13 20:24:10 2016 +0200 @@ -2297,7 +2297,7 @@ by (induct xs) auto lemma hd_dropWhile: "dropWhile P xs \ [] \ \ P (hd (dropWhile P xs))" -using assms by (induct xs) auto +by (induct xs) auto lemma takeWhile_eq_filter: assumes "\ x. x \ set (dropWhile P xs) \ \ P x" @@ -4956,8 +4956,7 @@ lemma filter_insort: "sorted (map f xs) \ P x \ filter P (insort_key f x xs) = insort_key f x (filter P xs)" - using assms by (induct xs) - (auto simp add: sorted_Cons, subst insort_is_Cons, auto) + by (induct xs) (auto simp add: sorted_Cons, subst insort_is_Cons, auto) lemma filter_sort: "filter P (sort_key f xs) = sort_key f (filter P xs)" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy --- a/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Cauchy_Integral_Thm.thy Fri May 13 20:24:10 2016 +0200 @@ -1798,7 +1798,6 @@ \ contour_integral (linepath a b) f = contour_integral (linepath a (midpoint a b)) f + contour_integral (linepath (midpoint a b) b) f" apply (rule contour_integral_split [where c = "midpoint a b" and k = "1/2"]) - using assms apply (auto simp: midpoint_def algebra_simps scaleR_conv_of_real) done diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Fri May 13 20:24:10 2016 +0200 @@ -179,7 +179,7 @@ lemma DERIV_zero_UNIV_unique: fixes f :: "'a::{real_normed_field, real_inner} \ 'a" shows "(\x. DERIV f x :> 0) \ f x = f a" -by (metis DERIV_zero_unique UNIV_I assms convex_UNIV) +by (metis DERIV_zero_unique UNIV_I convex_UNIV) subsection \Some limit theorems about real part of real series etc.\ @@ -322,7 +322,7 @@ lemma field_differentiable_minus [derivative_intros]: "f field_differentiable F \ (\z. - (f z)) field_differentiable F" - using assms unfolding field_differentiable_def + unfolding field_differentiable_def by (metis field_differentiable_minus) lemma field_differentiable_add [derivative_intros]: @@ -1047,7 +1047,6 @@ \ DERIV g (f x) :> inverse (f')" unfolding has_field_derivative_def apply (rule has_derivative_inverse_strong [of s x f g ]) - using assms by auto lemma has_complex_derivative_inverse_strong_x: @@ -1061,7 +1060,6 @@ \ DERIV g y :> inverse (f')" unfolding has_field_derivative_def apply (rule has_derivative_inverse_strong_x [of s g y f]) - using assms by auto subsection \Taylor on Complex Numbers\ diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Complex_Transcendental.thy --- a/src/HOL/Multivariate_Analysis/Complex_Transcendental.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Transcendental.thy Fri May 13 20:24:10 2016 +0200 @@ -984,7 +984,7 @@ using Ln_exp by blast lemma Re_Ln [simp]: "z \ 0 \ Re(Ln z) = ln(norm z)" - by (metis exp_Ln assms ln_exp norm_exp_eq_Re) + by (metis exp_Ln ln_exp norm_exp_eq_Re) corollary ln_cmod_le: assumes z: "z \ 0" @@ -1608,7 +1608,7 @@ hence "(-x) powr a = exp (a * ln (-of_real x))" by (simp add: powr_def) also from x have "ln (-of_real x) = Ln (of_real x) + of_real (sgn x) * pi * \" by (simp add: Ln_minus Ln_of_real) - also from x assms have "exp (a * ...) = cis pi powr (of_real (sgn x) * a) * of_real x powr a" + also from x have "exp (a * ...) = cis pi powr (of_real (sgn x) * a) * of_real x powr a" by (simp add: powr_def exp_add algebra_simps Ln_of_real cis_conv_exp) also note cis_pi finally show ?thesis by simp @@ -1621,7 +1621,7 @@ apply (simp add: powr_def) apply (rule DERIV_transform_at [where d = "norm z" and f = "\z. exp (s * Ln z)"]) apply (auto simp: dist_complex_def) - apply (intro derivative_eq_intros | simp add: assms)+ + apply (intro derivative_eq_intros | simp)+ apply (simp add: field_simps exp_diff) done @@ -1631,7 +1631,7 @@ lemma has_field_derivative_powr_right: "w \ 0 \ ((\z. w powr z) has_field_derivative Ln w * w powr z) (at z)" apply (simp add: powr_def) - apply (intro derivative_eq_intros | simp add: assms)+ + apply (intro derivative_eq_intros | simp)+ done lemma field_differentiable_powr_right: @@ -1772,7 +1772,7 @@ qed lemma lim_1_over_ln: "((\n. 1 / ln(real_of_nat n)) \ 0) sequentially" - using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]] assms + using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]] apply (subst filterlim_sequentially_Suc [symmetric]) apply (simp add: lim_sequentially dist_norm) apply (simp add: Ln_Reals_eq norm_powr_real_powr norm_divide) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri May 13 20:24:10 2016 +0200 @@ -2427,9 +2427,9 @@ moreover have "{x - a |x. x \ (s - {a})} = ((\x. -a+x) ` (s - {a}))" by auto moreover have "insert a (s - {a}) = insert a s" - using assms by auto + by auto ultimately have ?thesis - using assms affine_hull_insert_span[of "a" "s-{a}"] by auto + using affine_hull_insert_span[of "a" "s-{a}"] by auto } ultimately show ?thesis by auto qed @@ -2998,7 +2998,7 @@ have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_UNIV by auto then show "aff_dim (S:: 'n::euclidean_space set) \ int(DIM('n))" - using assms aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto + using aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto qed lemma affine_dim_equal: diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Fri May 13 20:24:10 2016 +0200 @@ -4189,7 +4189,7 @@ lemma additive_content_tagged_division: "d tagged_division_of (cbox a b) \ setsum (\(x,l). content l) d = content (cbox a b)" - unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,symmetric] + unfolding operative_tagged_division[OF monoidal_monoid operative_content,symmetric] using setsum_iterate by blast diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Path_Connected.thy --- a/src/HOL/Multivariate_Analysis/Path_Connected.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Path_Connected.thy Fri May 13 20:24:10 2016 +0200 @@ -1318,7 +1318,6 @@ by (auto intro!: path_component_mem path_component_refl) lemma path_component_sym: "path_component s x y \ path_component s y x" - using assms unfolding path_component_def apply (erule exE) apply (rule_tac x="reversepath g" in exI) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri May 13 20:24:10 2016 +0200 @@ -2791,7 +2791,7 @@ lemma closed_contains_Inf: fixes S :: "real set" shows "S \ {} \ bdd_below S \ closed S \ Inf S \ S" - by (metis closure_contains_Inf closure_closed assms) + by (metis closure_contains_Inf closure_closed) lemma closed_subset_contains_Inf: fixes A C :: "real set" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Number_Theory/Cong.thy --- a/src/HOL/Number_Theory/Cong.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Number_Theory/Cong.thy Fri May 13 20:24:10 2016 +0200 @@ -341,7 +341,7 @@ lemma cong_gcd_eq_nat: "[(a::nat) = b] (mod m) \gcd a m = gcd b m" - by (metis assms cong_gcd_eq_int [transferred]) + by (metis cong_gcd_eq_int [transferred]) lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \ coprime a m \ coprime b m" by (auto simp add: cong_gcd_eq_nat) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Bochner_Integration.thy --- a/src/HOL/Probability/Bochner_Integration.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Bochner_Integration.thy Fri May 13 20:24:10 2016 +0200 @@ -943,7 +943,7 @@ lemma integrable_cong: "M = N \ (\x. x \ space N \ f x = g x) \ integrable M f \ integrable N g" - using assms by (simp cong: has_bochner_integral_cong add: integrable.simps) + by (simp cong: has_bochner_integral_cong add: integrable.simps) lemma integrable_cong_AE: "f \ borel_measurable M \ g \ borel_measurable M \ AE x in M. f x = g x \ @@ -953,7 +953,7 @@ lemma integral_cong: "M = N \ (\x. x \ space N \ f x = g x) \ integral\<^sup>L M f = integral\<^sup>L N g" - using assms by (simp cong: has_bochner_integral_cong cong del: if_cong add: lebesgue_integral_def) + by (simp cong: has_bochner_integral_cong cong del: if_cong add: lebesgue_integral_def) lemma integral_cong_AE: "f \ borel_measurable M \ g \ borel_measurable M \ AE x in M. f x = g x \ diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Distribution_Functions.thy --- a/src/HOL/Probability/Distribution_Functions.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Distribution_Functions.thy Fri May 13 20:24:10 2016 +0200 @@ -64,7 +64,7 @@ unfolding cdf_def by (rule measure_nonneg) lemma cdf_bounded: "cdf M x \ measure M (space M)" - unfolding cdf_def using assms by (intro bounded_measure) + unfolding cdf_def by (intro bounded_measure) lemma cdf_lim_infty: "((\i. cdf M (real i)) \ measure M (space M))" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Giry_Monad.thy --- a/src/HOL/Probability/Giry_Monad.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Giry_Monad.thy Fri May 13 20:24:10 2016 +0200 @@ -771,7 +771,7 @@ done with M show "subprob_space (join M)" by (intro subprob_spaceI) - (auto simp: emeasure_join space_subprob_algebra M assms dest: subprob_space.emeasure_space_le_1) + (auto simp: emeasure_join space_subprob_algebra M dest: subprob_space.emeasure_space_le_1) next assume "\(space N \ {})" thus ?thesis by (simp add: measurable_empty_iff space_subprob_algebra_empty_iff) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Interval_Integral.thy --- a/src/HOL/Probability/Interval_Integral.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Interval_Integral.thy Fri May 13 20:24:10 2016 +0200 @@ -335,13 +335,13 @@ lemma interval_integral_zero [simp]: fixes a b :: ereal shows"LBINT x=a..b. 0 = 0" -using assms unfolding interval_lebesgue_integral_def einterval_eq +unfolding interval_lebesgue_integral_def einterval_eq by simp lemma interval_integral_const [intro, simp]: fixes a b c :: real shows "interval_lebesgue_integrable lborel a b (\x. c)" and "LBINT x=a..b. c = c * (b - a)" -using assms unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq +unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq by (auto simp add: less_imp_le field_simps measure_def) lemma interval_integral_cong_AE: diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Fri May 13 20:24:10 2016 +0200 @@ -923,7 +923,7 @@ lemma nn_integral_monotone_convergence_simple: "incseq f \ (\i. simple_function M (f i)) \ (SUP i. \\<^sup>S x. f i x \M) = (\\<^sup>+x. (SUP i. f i x) \M)" - using assms nn_integral_monotone_convergence_SUP[of f M] + using nn_integral_monotone_convergence_SUP[of f M] by (simp add: nn_integral_eq_simple_integral[symmetric] borel_measurable_simple_function) lemma SUP_simple_integral_sequences: @@ -986,7 +986,7 @@ using nn_integral_linear[of f M "\x. 0" c] by simp lemma nn_integral_multc: "f \ borel_measurable M \ (\\<^sup>+ x. f x * c \M) = integral\<^sup>N M f * c" - unfolding mult.commute[of _ c] nn_integral_cmult[OF assms] by simp + unfolding mult.commute[of _ c] nn_integral_cmult by simp lemma nn_integral_divide: "f \ borel_measurable M \ (\\<^sup>+ x. f x / c \M) = (\\<^sup>+ x. f x \M) / c" unfolding divide_ennreal_def by (rule nn_integral_multc) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Probability_Mass_Function.thy --- a/src/HOL/Probability/Probability_Mass_Function.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Probability_Mass_Function.thy Fri May 13 20:24:10 2016 +0200 @@ -653,7 +653,7 @@ qed lemma set_embed_pmf: "set_pmf embed_pmf = {x. f x \ 0}" -by(auto simp add: set_pmf_eq assms pmf_embed_pmf) +by(auto simp add: set_pmf_eq pmf_embed_pmf) end @@ -1563,7 +1563,7 @@ ennreal_of_nat_eq_real_of_nat nn_integral_pmf_of_set) lemma measure_pmf_of_set: "measure (measure_pmf pmf_of_set) A = card (S \ A) / card S" - using emeasure_pmf_of_set[OF assms, of A] + using emeasure_pmf_of_set[of A] by (simp add: measure_nonneg measure_pmf.emeasure_eq_measure) end diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Probability/Set_Integral.thy --- a/src/HOL/Probability/Set_Integral.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Probability/Set_Integral.thy Fri May 13 20:24:10 2016 +0200 @@ -183,7 +183,6 @@ lemma set_integral_reflect: fixes S and f :: "real \ 'a :: {banach, second_countable_topology}" shows "(LBINT x : S. f x) = (LBINT x : {x. - x \ S}. f (- x))" - using assms by (subst lborel_integral_real_affine[where c="-1" and t=0]) (auto intro!: integral_cong split: split_indicator) diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/SPARK/Tools/spark_commands.ML --- a/src/HOL/SPARK/Tools/spark_commands.ML Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/SPARK/Tools/spark_commands.ML Fri May 13 20:24:10 2016 +0200 @@ -48,7 +48,7 @@ val thy = Proof_Context.theory_of lthy; val (ctxt, stmt) = get_vc thy vc_name in - Specification.theorem Thm.theoremK NONE + Specification.theorem true Thm.theoremK NONE (fn thmss => (Local_Theory.background_theory (SPARK_VCs.mark_proved vc_name (flat thmss)))) (Binding.name vc_name, []) [] ctxt stmt false lthy diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Set_Interval.thy Fri May 13 20:24:10 2016 +0200 @@ -625,7 +625,7 @@ by (auto simp: min_def) lemma Ioc_disjoint: "{a<..b} \ {c<..d} = {} \ b \ a \ d \ c \ b \ c \ d \ a" - using assms by auto + by auto end diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Topological_Spaces.thy Fri May 13 20:24:10 2016 +0200 @@ -1367,7 +1367,7 @@ lemma (in first_countable_topology) sequentially_imp_eventually_at: "(\f. (\n. f n \ a) \ f \ a \ eventually (\n. P (f n)) sequentially) \ eventually P (at a)" - using assms sequentially_imp_eventually_within [where s=UNIV] by simp + using sequentially_imp_eventually_within [where s=UNIV] by simp lemma LIMSEQ_SEQ_conv1: fixes f :: "'a::topological_space \ 'b::topological_space" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Transcendental.thy Fri May 13 20:24:10 2016 +0200 @@ -2203,7 +2203,7 @@ lemma powr_mult_base: fixes x::real shows "0 < x \x * x powr y = x powr (1 + y)" - using assms by (auto simp: powr_add) + by (auto simp: powr_add) lemma powr_powr: fixes x::real shows "(x powr a) powr b = x powr (a * b)" diff -r 54f16a0a3069 -r a949b2a5f51d src/HOL/Transfer.thy --- a/src/HOL/Transfer.thy Fri May 13 20:22:02 2016 +0200 +++ b/src/HOL/Transfer.thy Fri May 13 20:24:10 2016 +0200 @@ -510,7 +510,7 @@ "right_total A \ ((A ===> A ===> op=) ===> implies) reflp reflp" "bi_total A \ ((A ===> A ===> rev_implies) ===> rev_implies) reflp reflp" "bi_total A \ ((A ===> A ===> op=) ===> rev_implies) reflp reflp" -using assms unfolding reflp_def[abs_def] rev_implies_def bi_total_def right_total_def rel_fun_def +unfolding reflp_def[abs_def] rev_implies_def bi_total_def right_total_def rel_fun_def by fast+ lemma right_unique_transfer [transfer_rule]: