# HG changeset patch # User wenzelm # Date 1234812223 -3600 # Node ID a9fc00f1b8f0d08a8bbdac277dc737bbc6747c51 # Parent ad4e3a577fd30a0418dba9e4942318ce926cf960 tuned; diff -r ad4e3a577fd3 -r a9fc00f1b8f0 src/FOL/ex/Nat_Class.thy --- a/src/FOL/ex/Nat_Class.thy Mon Feb 16 20:15:40 2009 +0100 +++ b/src/FOL/ex/Nat_Class.thy Mon Feb 16 20:23:43 2009 +0100 @@ -7,7 +7,7 @@ begin text {* - This is an abstract version of theory @{text "Nat"}. Instead of + This is an abstract version of theory @{text Nat}. Instead of axiomatizing a single type @{text nat} we define the class of all these types (up to isomorphism). @@ -17,7 +17,7 @@ class nat = fixes Zero :: 'a ("0") - and Suc :: "'a => 'a" + and Suc :: "'a \ 'a" and rec :: "'a \ 'a \ ('a \ 'a \ 'a) \ 'a" assumes induct: "P(0) \ (\x. P(x) \ P(Suc(x))) \ P(n)" and Suc_inject: "Suc(m) = Suc(n) \ m = n" @@ -30,7 +30,7 @@ add :: "'a \ 'a \ 'a" (infixl "+" 60) where "m + n = rec(m, n, \x y. Suc(y))" -lemma Suc_n_not_n: "Suc(k) ~= (k::'a)" +lemma Suc_n_not_n: "Suc(k) \ (k::'a)" apply (rule_tac n = k in induct) apply (rule notI) apply (erule Suc_neq_Zero)