# HG changeset patch # User huffman # Date 1291136327 28800 # Node ID ab0a8cc7976a848373f44cfa83fed5b2a11da01f # Parent 142f890ceef67bee0432cda98c98946ed6cb2c24 simplify proof of LIMSEQ_unique diff -r 142f890ceef6 -r ab0a8cc7976a src/HOL/SEQ.thy --- a/src/HOL/SEQ.thy Tue Nov 30 08:35:04 2010 -0800 +++ b/src/HOL/SEQ.thy Tue Nov 30 08:58:47 2010 -0800 @@ -221,15 +221,7 @@ lemma LIMSEQ_unique: fixes a b :: "'a::metric_space" shows "\X ----> a; X ----> b\ \ a = b" -apply (rule ccontr) -apply (drule_tac r="dist a b / 2" in metric_LIMSEQ_D, simp add: zero_less_dist_iff) -apply (drule_tac r="dist a b / 2" in metric_LIMSEQ_D, simp add: zero_less_dist_iff) -apply (clarify, rename_tac M N) -apply (subgoal_tac "dist a b < dist a b / 2 + dist a b / 2", simp) -apply (subgoal_tac "dist a b \ dist (X (max M N)) a + dist (X (max M N)) b") -apply (erule le_less_trans, rule add_strict_mono, simp, simp) -apply (subst dist_commute, rule dist_triangle) -done +by (drule (1) tendsto_dist, simp add: LIMSEQ_const_iff) lemma (in bounded_linear) LIMSEQ: "X ----> a \ (\n. f (X n)) ----> f a"