# HG changeset patch # User wenzelm # Date 1231707005 -3600 # Node ID b81ae415873d7f3c85f68aef8e23e687ca8e95d9 # Parent 5f0cb3fa530d48b2507bf8888f89c527bb25c6c8# Parent ac7f67be7f1fb7288e0a6f0aaf056373f5847a51 merged diff -r ac7f67be7f1f -r b81ae415873d src/HOL/Polynomial.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Polynomial.thy Sun Jan 11 21:50:05 2009 +0100 @@ -0,0 +1,922 @@ +(* Title: HOL/Polynomial.thy + Author: Brian Huffman + Based on an earlier development by Clemens Ballarin +*) + +header {* Univariate Polynomials *} + +theory Polynomial +imports Plain SetInterval +begin + +subsection {* Definition of type @{text poly} *} + +typedef (Poly) 'a poly = "{f::nat \ 'a::zero. \n. \i>n. f i = 0}" + morphisms coeff Abs_poly + by auto + +lemma expand_poly_eq: "p = q \ (\n. coeff p n = coeff q n)" +by (simp add: coeff_inject [symmetric] expand_fun_eq) + +lemma poly_ext: "(\n. coeff p n = coeff q n) \ p = q" +by (simp add: expand_poly_eq) + + +subsection {* Degree of a polynomial *} + +definition + degree :: "'a::zero poly \ nat" where + "degree p = (LEAST n. \i>n. coeff p i = 0)" + +lemma coeff_eq_0: "degree p < n \ coeff p n = 0" +proof - + have "coeff p \ Poly" + by (rule coeff) + hence "\n. \i>n. coeff p i = 0" + unfolding Poly_def by simp + hence "\i>degree p. coeff p i = 0" + unfolding degree_def by (rule LeastI_ex) + moreover assume "degree p < n" + ultimately show ?thesis by simp +qed + +lemma le_degree: "coeff p n \ 0 \ n \ degree p" + by (erule contrapos_np, rule coeff_eq_0, simp) + +lemma degree_le: "\i>n. coeff p i = 0 \ degree p \ n" + unfolding degree_def by (erule Least_le) + +lemma less_degree_imp: "n < degree p \ \i>n. coeff p i \ 0" + unfolding degree_def by (drule not_less_Least, simp) + + +subsection {* The zero polynomial *} + +instantiation poly :: (zero) zero +begin + +definition + zero_poly_def: "0 = Abs_poly (\n. 0)" + +instance .. +end + +lemma coeff_0 [simp]: "coeff 0 n = 0" + unfolding zero_poly_def + by (simp add: Abs_poly_inverse Poly_def) + +lemma degree_0 [simp]: "degree 0 = 0" + by (rule order_antisym [OF degree_le le0]) simp + +lemma leading_coeff_neq_0: + assumes "p \ 0" shows "coeff p (degree p) \ 0" +proof (cases "degree p") + case 0 + from `p \ 0` have "\n. coeff p n \ 0" + by (simp add: expand_poly_eq) + then obtain n where "coeff p n \ 0" .. + hence "n \ degree p" by (rule le_degree) + with `coeff p n \ 0` and `degree p = 0` + show "coeff p (degree p) \ 0" by simp +next + case (Suc n) + from `degree p = Suc n` have "n < degree p" by simp + hence "\i>n. coeff p i \ 0" by (rule less_degree_imp) + then obtain i where "n < i" and "coeff p i \ 0" by fast + from `degree p = Suc n` and `n < i` have "degree p \ i" by simp + also from `coeff p i \ 0` have "i \ degree p" by (rule le_degree) + finally have "degree p = i" . + with `coeff p i \ 0` show "coeff p (degree p) \ 0" by simp +qed + +lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \ p = 0" + by (cases "p = 0", simp, simp add: leading_coeff_neq_0) + + +subsection {* List-style constructor for polynomials *} + +definition + pCons :: "'a::zero \ 'a poly \ 'a poly" +where + [code del]: "pCons a p = Abs_poly (nat_case a (coeff p))" + +lemma Poly_nat_case: "f \ Poly \ nat_case a f \ Poly" + unfolding Poly_def by (auto split: nat.split) + +lemma coeff_pCons: + "coeff (pCons a p) = nat_case a (coeff p)" + unfolding pCons_def + by (simp add: Abs_poly_inverse Poly_nat_case coeff) + +lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a" + by (simp add: coeff_pCons) + +lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n" + by (simp add: coeff_pCons) + +lemma degree_pCons_le: "degree (pCons a p) \ Suc (degree p)" +by (rule degree_le, simp add: coeff_eq_0 coeff_pCons split: nat.split) + +lemma degree_pCons_eq: + "p \ 0 \ degree (pCons a p) = Suc (degree p)" +apply (rule order_antisym [OF degree_pCons_le]) +apply (rule le_degree, simp) +done + +lemma degree_pCons_0: "degree (pCons a 0) = 0" +apply (rule order_antisym [OF _ le0]) +apply (rule degree_le, simp add: coeff_pCons split: nat.split) +done + +lemma degree_pCons_eq_if: + "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))" +apply (cases "p = 0", simp_all) +apply (rule order_antisym [OF _ le0]) +apply (rule degree_le, simp add: coeff_pCons split: nat.split) +apply (rule order_antisym [OF degree_pCons_le]) +apply (rule le_degree, simp) +done + +lemma pCons_0_0 [simp]: "pCons 0 0 = 0" +by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma pCons_eq_iff [simp]: + "pCons a p = pCons b q \ a = b \ p = q" +proof (safe) + assume "pCons a p = pCons b q" + then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp + then show "a = b" by simp +next + assume "pCons a p = pCons b q" + then have "\n. coeff (pCons a p) (Suc n) = + coeff (pCons b q) (Suc n)" by simp + then show "p = q" by (simp add: expand_poly_eq) +qed + +lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \ a = 0 \ p = 0" + using pCons_eq_iff [of a p 0 0] by simp + +lemma Poly_Suc: "f \ Poly \ (\n. f (Suc n)) \ Poly" + unfolding Poly_def + by (clarify, rule_tac x=n in exI, simp) + +lemma pCons_cases [cases type: poly]: + obtains (pCons) a q where "p = pCons a q" +proof + show "p = pCons (coeff p 0) (Abs_poly (\n. coeff p (Suc n)))" + by (rule poly_ext) + (simp add: Abs_poly_inverse Poly_Suc coeff coeff_pCons + split: nat.split) +qed + +lemma pCons_induct [case_names 0 pCons, induct type: poly]: + assumes zero: "P 0" + assumes pCons: "\a p. P p \ P (pCons a p)" + shows "P p" +proof (induct p rule: measure_induct_rule [where f=degree]) + case (less p) + obtain a q where "p = pCons a q" by (rule pCons_cases) + have "P q" + proof (cases "q = 0") + case True + then show "P q" by (simp add: zero) + next + case False + then have "degree (pCons a q) = Suc (degree q)" + by (rule degree_pCons_eq) + then have "degree q < degree p" + using `p = pCons a q` by simp + then show "P q" + by (rule less.hyps) + qed + then have "P (pCons a q)" + by (rule pCons) + then show ?case + using `p = pCons a q` by simp +qed + + +subsection {* Monomials *} + +definition + monom :: "'a \ nat \ 'a::zero poly" where + "monom a m = Abs_poly (\n. if m = n then a else 0)" + +lemma coeff_monom [simp]: "coeff (monom a m) n = (if m=n then a else 0)" + unfolding monom_def + by (subst Abs_poly_inverse, auto simp add: Poly_def) + +lemma monom_0: "monom a 0 = pCons a 0" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma monom_eq_0 [simp]: "monom 0 n = 0" + by (rule poly_ext) simp + +lemma monom_eq_0_iff [simp]: "monom a n = 0 \ a = 0" + by (simp add: expand_poly_eq) + +lemma monom_eq_iff [simp]: "monom a n = monom b n \ a = b" + by (simp add: expand_poly_eq) + +lemma degree_monom_le: "degree (monom a n) \ n" + by (rule degree_le, simp) + +lemma degree_monom_eq: "a \ 0 \ degree (monom a n) = n" + apply (rule order_antisym [OF degree_monom_le]) + apply (rule le_degree, simp) + done + + +subsection {* Addition and subtraction *} + +instantiation poly :: (comm_monoid_add) comm_monoid_add +begin + +definition + plus_poly_def [code del]: + "p + q = Abs_poly (\n. coeff p n + coeff q n)" + +lemma Poly_add: + fixes f g :: "nat \ 'a" + shows "\f \ Poly; g \ Poly\ \ (\n. f n + g n) \ Poly" + unfolding Poly_def + apply (clarify, rename_tac m n) + apply (rule_tac x="max m n" in exI, simp) + done + +lemma coeff_add [simp]: + "coeff (p + q) n = coeff p n + coeff q n" + unfolding plus_poly_def + by (simp add: Abs_poly_inverse coeff Poly_add) + +instance proof + fix p q r :: "'a poly" + show "(p + q) + r = p + (q + r)" + by (simp add: expand_poly_eq add_assoc) + show "p + q = q + p" + by (simp add: expand_poly_eq add_commute) + show "0 + p = p" + by (simp add: expand_poly_eq) +qed + +end + +instantiation poly :: (ab_group_add) ab_group_add +begin + +definition + uminus_poly_def [code del]: + "- p = Abs_poly (\n. - coeff p n)" + +definition + minus_poly_def [code del]: + "p - q = Abs_poly (\n. coeff p n - coeff q n)" + +lemma Poly_minus: + fixes f :: "nat \ 'a" + shows "f \ Poly \ (\n. - f n) \ Poly" + unfolding Poly_def by simp + +lemma Poly_diff: + fixes f g :: "nat \ 'a" + shows "\f \ Poly; g \ Poly\ \ (\n. f n - g n) \ Poly" + unfolding diff_minus by (simp add: Poly_add Poly_minus) + +lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n" + unfolding uminus_poly_def + by (simp add: Abs_poly_inverse coeff Poly_minus) + +lemma coeff_diff [simp]: + "coeff (p - q) n = coeff p n - coeff q n" + unfolding minus_poly_def + by (simp add: Abs_poly_inverse coeff Poly_diff) + +instance proof + fix p q :: "'a poly" + show "- p + p = 0" + by (simp add: expand_poly_eq) + show "p - q = p + - q" + by (simp add: expand_poly_eq diff_minus) +qed + +end + +lemma add_pCons [simp]: + "pCons a p + pCons b q = pCons (a + b) (p + q)" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma minus_pCons [simp]: + "- pCons a p = pCons (- a) (- p)" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma diff_pCons [simp]: + "pCons a p - pCons b q = pCons (a - b) (p - q)" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma degree_add_le: "degree (p + q) \ max (degree p) (degree q)" + by (rule degree_le, auto simp add: coeff_eq_0) + +lemma degree_add_eq_right: + "degree p < degree q \ degree (p + q) = degree q" + apply (cases "q = 0", simp) + apply (rule order_antisym) + apply (rule ord_le_eq_trans [OF degree_add_le]) + apply simp + apply (rule le_degree) + apply (simp add: coeff_eq_0) + done + +lemma degree_add_eq_left: + "degree q < degree p \ degree (p + q) = degree p" + using degree_add_eq_right [of q p] + by (simp add: add_commute) + +lemma degree_minus [simp]: "degree (- p) = degree p" + unfolding degree_def by simp + +lemma degree_diff_le: "degree (p - q) \ max (degree p) (degree q)" + using degree_add_le [where p=p and q="-q"] + by (simp add: diff_minus) + +lemma add_monom: "monom a n + monom b n = monom (a + b) n" + by (rule poly_ext) simp + +lemma diff_monom: "monom a n - monom b n = monom (a - b) n" + by (rule poly_ext) simp + +lemma minus_monom: "- monom a n = monom (-a) n" + by (rule poly_ext) simp + +lemma coeff_setsum: "coeff (\x\A. p x) i = (\x\A. coeff (p x) i)" + by (cases "finite A", induct set: finite, simp_all) + +lemma monom_setsum: "monom (\x\A. a x) n = (\x\A. monom (a x) n)" + by (rule poly_ext) (simp add: coeff_setsum) + + +subsection {* Multiplication by a constant *} + +definition + smult :: "'a::comm_semiring_0 \ 'a poly \ 'a poly" where + "smult a p = Abs_poly (\n. a * coeff p n)" + +lemma Poly_smult: + fixes f :: "nat \ 'a::comm_semiring_0" + shows "f \ Poly \ (\n. a * f n) \ Poly" + unfolding Poly_def + by (clarify, rule_tac x=n in exI, simp) + +lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n" + unfolding smult_def + by (simp add: Abs_poly_inverse Poly_smult coeff) + +lemma degree_smult_le: "degree (smult a p) \ degree p" + by (rule degree_le, simp add: coeff_eq_0) + +lemma smult_smult: "smult a (smult b p) = smult (a * b) p" + by (rule poly_ext, simp add: mult_assoc) + +lemma smult_0_right [simp]: "smult a 0 = 0" + by (rule poly_ext, simp) + +lemma smult_0_left [simp]: "smult 0 p = 0" + by (rule poly_ext, simp) + +lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p" + by (rule poly_ext, simp) + +lemma smult_add_right: + "smult a (p + q) = smult a p + smult a q" + by (rule poly_ext, simp add: ring_simps) + +lemma smult_add_left: + "smult (a + b) p = smult a p + smult b p" + by (rule poly_ext, simp add: ring_simps) + +lemma smult_minus_right: + "smult (a::'a::comm_ring) (- p) = - smult a p" + by (rule poly_ext, simp) + +lemma smult_minus_left: + "smult (- a::'a::comm_ring) p = - smult a p" + by (rule poly_ext, simp) + +lemma smult_diff_right: + "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q" + by (rule poly_ext, simp add: ring_simps) + +lemma smult_diff_left: + "smult (a - b::'a::comm_ring) p = smult a p - smult b p" + by (rule poly_ext, simp add: ring_simps) + +lemma smult_pCons [simp]: + "smult a (pCons b p) = pCons (a * b) (smult a p)" + by (rule poly_ext, simp add: coeff_pCons split: nat.split) + +lemma smult_monom: "smult a (monom b n) = monom (a * b) n" + by (induct n, simp add: monom_0, simp add: monom_Suc) + + +subsection {* Multiplication of polynomials *} + +lemma Poly_mult_lemma: + fixes f g :: "nat \ 'a::comm_semiring_0" and m n :: nat + assumes "\i>m. f i = 0" + assumes "\j>n. g j = 0" + shows "\k>m+n. (\i\k. f i * g (k-i)) = 0" +proof (clarify) + fix k :: nat + assume "m + n < k" + show "(\i\k. f i * g (k - i)) = 0" + proof (rule setsum_0' [rule_format]) + fix i :: nat + assume "i \ {..k}" hence "i \ k" by simp + with `m + n < k` have "m < i \ n < k - i" by arith + thus "f i * g (k - i) = 0" + using prems by auto + qed +qed + +lemma Poly_mult: + fixes f g :: "nat \ 'a::comm_semiring_0" + shows "\f \ Poly; g \ Poly\ \ (\n. \i\n. f i * g (n-i)) \ Poly" + unfolding Poly_def + by (safe, rule exI, rule Poly_mult_lemma) + +lemma poly_mult_assoc_lemma: + fixes k :: nat and f :: "nat \ nat \ nat \ 'a::comm_monoid_add" + shows "(\j\k. \i\j. f i (j - i) (n - j)) = + (\j\k. \i\k - j. f j i (n - j - i))" +proof (induct k) + case 0 show ?case by simp +next + case (Suc k) thus ?case + by (simp add: Suc_diff_le setsum_addf add_assoc + cong: strong_setsum_cong) +qed + +lemma poly_mult_commute_lemma: + fixes n :: nat and f :: "nat \ nat \ 'a::comm_monoid_add" + shows "(\i\n. f i (n - i)) = (\i\n. f (n - i) i)" +proof (rule setsum_reindex_cong) + show "inj_on (\i. n - i) {..n}" + by (rule inj_onI) simp + show "{..n} = (\i. n - i) ` {..n}" + by (auto, rule_tac x="n - x" in image_eqI, simp_all) +next + fix i assume "i \ {..n}" + hence "n - (n - i) = i" by simp + thus "f (n - i) i = f (n - i) (n - (n - i))" by simp +qed + +text {* TODO: move to appropriate theory *} +lemma setsum_atMost_Suc_shift: + fixes f :: "nat \ 'a::comm_monoid_add" + shows "(\i\Suc n. f i) = f 0 + (\i\n. f (Suc i))" +proof (induct n) + case 0 show ?case by simp +next + case (Suc n) note IH = this + have "(\i\Suc (Suc n). f i) = (\i\Suc n. f i) + f (Suc (Suc n))" + by (rule setsum_atMost_Suc) + also have "(\i\Suc n. f i) = f 0 + (\i\n. f (Suc i))" + by (rule IH) + also have "f 0 + (\i\n. f (Suc i)) + f (Suc (Suc n)) = + f 0 + ((\i\n. f (Suc i)) + f (Suc (Suc n)))" + by (rule add_assoc) + also have "(\i\n. f (Suc i)) + f (Suc (Suc n)) = (\i\Suc n. f (Suc i))" + by (rule setsum_atMost_Suc [symmetric]) + finally show ?case . +qed + +instantiation poly :: (comm_semiring_0) comm_semiring_0 +begin + +definition + times_poly_def: + "p * q = Abs_poly (\n. \i\n. coeff p i * coeff q (n-i))" + +lemma coeff_mult: + "coeff (p * q) n = (\i\n. coeff p i * coeff q (n-i))" + unfolding times_poly_def + by (simp add: Abs_poly_inverse coeff Poly_mult) + +instance proof + fix p q r :: "'a poly" + show 0: "0 * p = 0" + by (simp add: expand_poly_eq coeff_mult) + show "p * 0 = 0" + by (simp add: expand_poly_eq coeff_mult) + show "(p + q) * r = p * r + q * r" + by (simp add: expand_poly_eq coeff_mult left_distrib setsum_addf) + show "(p * q) * r = p * (q * r)" + proof (rule poly_ext) + fix n :: nat + have "(\j\n. \i\j. coeff p i * coeff q (j - i) * coeff r (n - j)) = + (\j\n. \i\n - j. coeff p j * coeff q i * coeff r (n - j - i))" + by (rule poly_mult_assoc_lemma) + thus "coeff ((p * q) * r) n = coeff (p * (q * r)) n" + by (simp add: coeff_mult setsum_right_distrib + setsum_left_distrib mult_assoc) + qed + show "p * q = q * p" + proof (rule poly_ext) + fix n :: nat + have "(\i\n. coeff p i * coeff q (n - i)) = + (\i\n. coeff p (n - i) * coeff q i)" + by (rule poly_mult_commute_lemma) + thus "coeff (p * q) n = coeff (q * p) n" + by (simp add: coeff_mult mult_commute) + qed +qed + +end + +lemma degree_mult_le: "degree (p * q) \ degree p + degree q" +apply (rule degree_le, simp add: coeff_mult) +apply (rule Poly_mult_lemma) +apply (simp_all add: coeff_eq_0) +done + +lemma mult_pCons_left [simp]: + "pCons a p * q = smult a q + pCons 0 (p * q)" +apply (rule poly_ext) +apply (case_tac n) +apply (simp add: coeff_mult) +apply (simp add: coeff_mult setsum_atMost_Suc_shift + del: setsum_atMost_Suc) +done + +lemma mult_pCons_right [simp]: + "p * pCons a q = smult a p + pCons 0 (p * q)" + using mult_pCons_left [of a q p] by (simp add: mult_commute) + +lemma mult_smult_left: "smult a p * q = smult a (p * q)" + by (induct p, simp, simp add: smult_add_right smult_smult) + +lemma mult_smult_right: "p * smult a q = smult a (p * q)" + using mult_smult_left [of a q p] by (simp add: mult_commute) + +lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)" + by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc) + + +subsection {* The unit polynomial and exponentiation *} + +instantiation poly :: (comm_semiring_1) comm_semiring_1 +begin + +definition + one_poly_def: + "1 = pCons 1 0" + +instance proof + fix p :: "'a poly" show "1 * p = p" + unfolding one_poly_def + by simp +next + show "0 \ (1::'a poly)" + unfolding one_poly_def by simp +qed + +end + +lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)" + unfolding one_poly_def + by (simp add: coeff_pCons split: nat.split) + +lemma degree_1 [simp]: "degree 1 = 0" + unfolding one_poly_def + by (rule degree_pCons_0) + +instantiation poly :: (comm_semiring_1) recpower +begin + +primrec power_poly where + power_poly_0: "(p::'a poly) ^ 0 = 1" +| power_poly_Suc: "(p::'a poly) ^ (Suc n) = p * p ^ n" + +instance + by default simp_all + +end + +instance poly :: (comm_ring) comm_ring .. + +instance poly :: (comm_ring_1) comm_ring_1 .. + +instantiation poly :: (comm_ring_1) number_ring +begin + +definition + "number_of k = (of_int k :: 'a poly)" + +instance + by default (rule number_of_poly_def) + +end + + +subsection {* Polynomials form an integral domain *} + +lemma coeff_mult_degree_sum: + "coeff (p * q) (degree p + degree q) = + coeff p (degree p) * coeff q (degree q)" + apply (simp add: coeff_mult) + apply (subst setsum_diff1' [where a="degree p"]) + apply simp + apply simp + apply (subst setsum_0' [rule_format]) + apply clarsimp + apply (subgoal_tac "degree p < a \ degree q < degree p + degree q - a") + apply (force simp add: coeff_eq_0) + apply arith + apply simp +done + +instance poly :: (idom) idom +proof + fix p q :: "'a poly" + assume "p \ 0" and "q \ 0" + have "coeff (p * q) (degree p + degree q) = + coeff p (degree p) * coeff q (degree q)" + by (rule coeff_mult_degree_sum) + also have "coeff p (degree p) * coeff q (degree q) \ 0" + using `p \ 0` and `q \ 0` by simp + finally have "\n. coeff (p * q) n \ 0" .. + thus "p * q \ 0" by (simp add: expand_poly_eq) +qed + +lemma degree_mult_eq: + fixes p q :: "'a::idom poly" + shows "\p \ 0; q \ 0\ \ degree (p * q) = degree p + degree q" +apply (rule order_antisym [OF degree_mult_le le_degree]) +apply (simp add: coeff_mult_degree_sum) +done + +lemma dvd_imp_degree_le: + fixes p q :: "'a::idom poly" + shows "\p dvd q; q \ 0\ \ degree p \ degree q" + by (erule dvdE, simp add: degree_mult_eq) + + +subsection {* Long division of polynomials *} + +definition + divmod_poly_rel :: "'a::field poly \ 'a poly \ 'a poly \ 'a poly \ bool" +where + "divmod_poly_rel x y q r \ + x = q * y + r \ (if y = 0 then q = 0 else r = 0 \ degree r < degree y)" + +lemma divmod_poly_rel_0: + "divmod_poly_rel 0 y 0 0" + unfolding divmod_poly_rel_def by simp + +lemma divmod_poly_rel_by_0: + "divmod_poly_rel x 0 0 x" + unfolding divmod_poly_rel_def by simp + +lemma eq_zero_or_degree_less: + assumes "degree p \ n" and "coeff p n = 0" + shows "p = 0 \ degree p < n" +proof (cases n) + case 0 + with `degree p \ n` and `coeff p n = 0` + have "coeff p (degree p) = 0" by simp + then have "p = 0" by simp + then show ?thesis .. +next + case (Suc m) + have "\i>n. coeff p i = 0" + using `degree p \ n` by (simp add: coeff_eq_0) + then have "\i\n. coeff p i = 0" + using `coeff p n = 0` by (simp add: le_less) + then have "\i>m. coeff p i = 0" + using `n = Suc m` by (simp add: less_eq_Suc_le) + then have "degree p \ m" + by (rule degree_le) + then have "degree p < n" + using `n = Suc m` by (simp add: less_Suc_eq_le) + then show ?thesis .. +qed + +lemma divmod_poly_rel_pCons: + assumes rel: "divmod_poly_rel x y q r" + assumes y: "y \ 0" + assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)" + shows "divmod_poly_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)" + (is "divmod_poly_rel ?x y ?q ?r") +proof - + have x: "x = q * y + r" and r: "r = 0 \ degree r < degree y" + using assms unfolding divmod_poly_rel_def by simp_all + + have 1: "?x = ?q * y + ?r" + using b x by simp + + have 2: "?r = 0 \ degree ?r < degree y" + proof (rule eq_zero_or_degree_less) + have "degree ?r \ max (degree (pCons a r)) (degree (smult b y))" + by (rule degree_diff_le) + also have "\ \ degree y" + proof (rule min_max.le_supI) + show "degree (pCons a r) \ degree y" + using r by (auto simp add: degree_pCons_eq_if) + show "degree (smult b y) \ degree y" + by (rule degree_smult_le) + qed + finally show "degree ?r \ degree y" . + next + show "coeff ?r (degree y) = 0" + using `y \ 0` unfolding b by simp + qed + + from 1 2 show ?thesis + unfolding divmod_poly_rel_def + using `y \ 0` by simp +qed + +lemma divmod_poly_rel_exists: "\q r. divmod_poly_rel x y q r" +apply (cases "y = 0") +apply (fast intro!: divmod_poly_rel_by_0) +apply (induct x) +apply (fast intro!: divmod_poly_rel_0) +apply (fast intro!: divmod_poly_rel_pCons) +done + +lemma divmod_poly_rel_unique: + assumes 1: "divmod_poly_rel x y q1 r1" + assumes 2: "divmod_poly_rel x y q2 r2" + shows "q1 = q2 \ r1 = r2" +proof (cases "y = 0") + assume "y = 0" with assms show ?thesis + by (simp add: divmod_poly_rel_def) +next + assume [simp]: "y \ 0" + from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \ degree r1 < degree y" + unfolding divmod_poly_rel_def by simp_all + from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \ degree r2 < degree y" + unfolding divmod_poly_rel_def by simp_all + from q1 q2 have q3: "(q1 - q2) * y = r2 - r1" + by (simp add: ring_simps) + from r1 r2 have r3: "(r2 - r1) = 0 \ degree (r2 - r1) < degree y" + by (auto intro: le_less_trans [OF degree_diff_le]) + + show "q1 = q2 \ r1 = r2" + proof (rule ccontr) + assume "\ (q1 = q2 \ r1 = r2)" + with q3 have "q1 \ q2" and "r1 \ r2" by auto + with r3 have "degree (r2 - r1) < degree y" by simp + also have "degree y \ degree (q1 - q2) + degree y" by simp + also have "\ = degree ((q1 - q2) * y)" + using `q1 \ q2` by (simp add: degree_mult_eq) + also have "\ = degree (r2 - r1)" + using q3 by simp + finally have "degree (r2 - r1) < degree (r2 - r1)" . + then show "False" by simp + qed +qed + +lemmas divmod_poly_rel_unique_div = + divmod_poly_rel_unique [THEN conjunct1, standard] + +lemmas divmod_poly_rel_unique_mod = + divmod_poly_rel_unique [THEN conjunct2, standard] + +instantiation poly :: (field) ring_div +begin + +definition div_poly where + [code del]: "x div y = (THE q. \r. divmod_poly_rel x y q r)" + +definition mod_poly where + [code del]: "x mod y = (THE r. \q. divmod_poly_rel x y q r)" + +lemma div_poly_eq: + "divmod_poly_rel x y q r \ x div y = q" +unfolding div_poly_def +by (fast elim: divmod_poly_rel_unique_div) + +lemma mod_poly_eq: + "divmod_poly_rel x y q r \ x mod y = r" +unfolding mod_poly_def +by (fast elim: divmod_poly_rel_unique_mod) + +lemma divmod_poly_rel: + "divmod_poly_rel x y (x div y) (x mod y)" +proof - + from divmod_poly_rel_exists + obtain q r where "divmod_poly_rel x y q r" by fast + thus ?thesis + by (simp add: div_poly_eq mod_poly_eq) +qed + +instance proof + fix x y :: "'a poly" + show "x div y * y + x mod y = x" + using divmod_poly_rel [of x y] + by (simp add: divmod_poly_rel_def) +next + fix x :: "'a poly" + have "divmod_poly_rel x 0 0 x" + by (rule divmod_poly_rel_by_0) + thus "x div 0 = 0" + by (rule div_poly_eq) +next + fix y :: "'a poly" + have "divmod_poly_rel 0 y 0 0" + by (rule divmod_poly_rel_0) + thus "0 div y = 0" + by (rule div_poly_eq) +next + fix x y z :: "'a poly" + assume "y \ 0" + hence "divmod_poly_rel (x + z * y) y (z + x div y) (x mod y)" + using divmod_poly_rel [of x y] + by (simp add: divmod_poly_rel_def left_distrib) + thus "(x + z * y) div y = z + x div y" + by (rule div_poly_eq) +qed + +end + +lemma degree_mod_less: + "y \ 0 \ x mod y = 0 \ degree (x mod y) < degree y" + using divmod_poly_rel [of x y] + unfolding divmod_poly_rel_def by simp + +lemma div_poly_less: "degree x < degree y \ x div y = 0" +proof - + assume "degree x < degree y" + hence "divmod_poly_rel x y 0 x" + by (simp add: divmod_poly_rel_def) + thus "x div y = 0" by (rule div_poly_eq) +qed + +lemma mod_poly_less: "degree x < degree y \ x mod y = x" +proof - + assume "degree x < degree y" + hence "divmod_poly_rel x y 0 x" + by (simp add: divmod_poly_rel_def) + thus "x mod y = x" by (rule mod_poly_eq) +qed + +lemma mod_pCons: + fixes a and x + assumes y: "y \ 0" + defines b: "b \ coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)" + shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)" +unfolding b +apply (rule mod_poly_eq) +apply (rule divmod_poly_rel_pCons [OF divmod_poly_rel y refl]) +done + + +subsection {* Evaluation of polynomials *} + +definition + poly :: "'a::{comm_semiring_1,recpower} poly \ 'a \ 'a" where + "poly p = (\x. \n\degree p. coeff p n * x ^ n)" + +lemma poly_0 [simp]: "poly 0 x = 0" + unfolding poly_def by simp + +lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x" + unfolding poly_def + by (simp add: degree_pCons_eq_if setsum_atMost_Suc_shift power_Suc + setsum_left_distrib setsum_right_distrib mult_ac + del: setsum_atMost_Suc) + +lemma poly_1 [simp]: "poly 1 x = 1" + unfolding one_poly_def by simp + +lemma poly_monom: "poly (monom a n) x = a * x ^ n" + by (induct n, simp add: monom_0, simp add: monom_Suc power_Suc mult_ac) + +lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x" + apply (induct p arbitrary: q, simp) + apply (case_tac q, simp, simp add: ring_simps) + done + +lemma poly_minus [simp]: + fixes x :: "'a::{comm_ring_1,recpower}" + shows "poly (- p) x = - poly p x" + by (induct p, simp_all) + +lemma poly_diff [simp]: + fixes x :: "'a::{comm_ring_1,recpower}" + shows "poly (p - q) x = poly p x - poly q x" + by (simp add: diff_minus) + +lemma poly_setsum: "poly (\k\A. p k) x = (\k\A. poly (p k) x)" + by (cases "finite A", induct set: finite, simp_all) + +lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x" + by (induct p, simp, simp add: ring_simps) + +lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x" + by (induct p, simp_all, simp add: ring_simps) + +end