# HG changeset patch # User huffman # Date 1293133919 28800 # Node ID ad093e4638e25297aa605620749b6e268e7aabdd # Parent f2bb6541f5325306f01b57696d4346ee07fcca41 changed syntax of powerdomain binary union operators diff -r f2bb6541f532 -r ad093e4638e2 src/HOL/HOLCF/ConvexPD.thy --- a/src/HOL/HOLCF/ConvexPD.thy Thu Dec 23 12:20:09 2010 +0100 +++ b/src/HOL/HOLCF/ConvexPD.thy Thu Dec 23 11:51:59 2010 -0800 @@ -177,14 +177,14 @@ abbreviation convex_add :: "'a convex_pd \ 'a convex_pd \ 'a convex_pd" - (infixl "+\" 65) where - "xs +\ ys == convex_plus\xs\ys" + (infixl "\\" 65) where + "xs \\ ys == convex_plus\xs\ys" syntax "_convex_pd" :: "args \ 'a convex_pd" ("{_}\") translations - "{x,xs}\" == "{x}\ +\ {xs}\" + "{x,xs}\" == "{x}\ \\ {xs}\" "{x}\" == "CONST convex_unit\x" lemma convex_unit_Rep_compact_basis [simp]: @@ -193,23 +193,23 @@ by (simp add: compact_basis.extension_principal PDUnit_convex_mono) lemma convex_plus_principal [simp]: - "convex_principal t +\ convex_principal u = convex_principal (PDPlus t u)" + "convex_principal t \\ convex_principal u = convex_principal (PDPlus t u)" unfolding convex_plus_def by (simp add: convex_pd.extension_principal convex_pd.extension_mono PDPlus_convex_mono) interpretation convex_add: semilattice convex_add proof fix xs ys zs :: "'a convex_pd" - show "(xs +\ ys) +\ zs = xs +\ (ys +\ zs)" + show "(xs \\ ys) \\ zs = xs \\ (ys \\ zs)" apply (induct xs ys arbitrary: zs rule: convex_pd.principal_induct2, simp, simp) apply (rule_tac x=zs in convex_pd.principal_induct, simp) apply (simp add: PDPlus_assoc) done - show "xs +\ ys = ys +\ xs" + show "xs \\ ys = ys \\ xs" apply (induct xs ys rule: convex_pd.principal_induct2, simp, simp) apply (simp add: PDPlus_commute) done - show "xs +\ xs = xs" + show "xs \\ xs = xs" apply (induct xs rule: convex_pd.principal_induct, simp) apply (simp add: PDPlus_absorb) done @@ -230,7 +230,7 @@ convex_plus_ac convex_plus_absorb convex_plus_left_absorb lemma convex_unit_below_plus_iff [simp]: - "{x}\ \ ys +\ zs \ {x}\ \ ys \ {x}\ \ zs" + "{x}\ \ ys \\ zs \ {x}\ \ ys \ {x}\ \ zs" apply (induct x rule: compact_basis.principal_induct, simp) apply (induct ys rule: convex_pd.principal_induct, simp) apply (induct zs rule: convex_pd.principal_induct, simp) @@ -238,7 +238,7 @@ done lemma convex_plus_below_unit_iff [simp]: - "xs +\ ys \ {z}\ \ xs \ {z}\ \ ys \ {z}\" + "xs \\ ys \ {z}\ \ xs \ {z}\ \ ys \ {z}\" apply (induct xs rule: convex_pd.principal_induct, simp) apply (induct ys rule: convex_pd.principal_induct, simp) apply (induct z rule: compact_basis.principal_induct, simp) @@ -271,7 +271,7 @@ done lemma compact_convex_plus [simp]: - "\compact xs; compact ys\ \ compact (xs +\ ys)" + "\compact xs; compact ys\ \ compact (xs \\ ys)" by (auto dest!: convex_pd.compact_imp_principal) @@ -280,7 +280,7 @@ lemma convex_pd_induct1: assumes P: "adm P" assumes unit: "\x. P {x}\" - assumes insert: "\x ys. \P {x}\; P ys\ \ P ({x}\ +\ ys)" + assumes insert: "\x ys. \P {x}\; P ys\ \ P ({x}\ \\ ys)" shows "P (xs::'a convex_pd)" apply (induct xs rule: convex_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct1) @@ -295,7 +295,7 @@ [case_names adm convex_unit convex_plus, induct type: convex_pd]: assumes P: "adm P" assumes unit: "\x. P {x}\" - assumes plus: "\xs ys. \P xs; P ys\ \ P (xs +\ ys)" + assumes plus: "\xs ys. \P xs; P ys\ \ P (xs \\ ys)" shows "P (xs::'a convex_pd)" apply (induct xs rule: convex_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct) @@ -311,10 +311,10 @@ "'a pd_basis \ ('a \ 'b convex_pd) \ 'b convex_pd" where "convex_bind_basis = fold_pd (\a. \ f. f\(Rep_compact_basis a)) - (\x y. \ f. x\f +\ y\f)" + (\x y. \ f. x\f \\ y\f)" lemma ACI_convex_bind: - "class.ab_semigroup_idem_mult (\x y. \ f. x\f +\ y\f)" + "class.ab_semigroup_idem_mult (\x y. \ f. x\f \\ y\f)" apply unfold_locales apply (simp add: convex_plus_assoc) apply (simp add: convex_plus_commute) @@ -325,7 +325,7 @@ "convex_bind_basis (PDUnit a) = (\ f. f\(Rep_compact_basis a))" "convex_bind_basis (PDPlus t u) = - (\ f. convex_bind_basis t\f +\ convex_bind_basis u\f)" + (\ f. convex_bind_basis t\f \\ convex_bind_basis u\f)" unfolding convex_bind_basis_def apply - apply (rule fold_pd_PDUnit [OF ACI_convex_bind]) @@ -363,7 +363,7 @@ by (induct x rule: compact_basis.principal_induct, simp, simp) lemma convex_bind_plus [simp]: - "convex_bind\(xs +\ ys)\f = convex_bind\xs\f +\ convex_bind\ys\f" + "convex_bind\(xs \\ ys)\f = convex_bind\xs\f \\ convex_bind\ys\f" by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) lemma convex_bind_strict [simp]: "convex_bind\\\f = f\\" @@ -386,7 +386,7 @@ unfolding convex_map_def by simp lemma convex_map_plus [simp]: - "convex_map\f\(xs +\ ys) = convex_map\f\xs +\ convex_map\f\ys" + "convex_map\f\(xs \\ ys) = convex_map\f\xs \\ convex_map\f\ys" unfolding convex_map_def by simp lemma convex_map_bottom [simp]: "convex_map\f\\ = {f\\}\" @@ -492,7 +492,7 @@ unfolding convex_join_def by simp lemma convex_join_plus [simp]: - "convex_join\(xss +\ yss) = convex_join\xss +\ convex_join\yss" + "convex_join\(xss \\ yss) = convex_join\xss \\ convex_join\yss" unfolding convex_join_def by simp lemma convex_join_bottom [simp]: "convex_join\\ = \" @@ -536,7 +536,7 @@ by (induct x rule: compact_basis.principal_induct, simp, simp) lemma convex_to_upper_plus [simp]: - "convex_to_upper\(xs +\ ys) = convex_to_upper\xs +\ convex_to_upper\ys" + "convex_to_upper\(xs \\ ys) = convex_to_upper\xs \\ convex_to_upper\ys" by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) lemma convex_to_upper_bind [simp]: @@ -575,7 +575,7 @@ by (induct x rule: compact_basis.principal_induct, simp, simp) lemma convex_to_lower_plus [simp]: - "convex_to_lower\(xs +\ ys) = convex_to_lower\xs +\ convex_to_lower\ys" + "convex_to_lower\(xs \\ ys) = convex_to_lower\xs \\ convex_to_lower\ys" by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) lemma convex_to_lower_bind [simp]: @@ -604,7 +604,7 @@ done lemmas convex_plus_below_plus_iff = - convex_pd_below_iff [where xs="xs +\ ys" and ys="zs +\ ws", standard] + convex_pd_below_iff [where xs="xs \\ ys" and ys="zs \\ ws", standard] lemmas convex_pd_below_simps = convex_unit_below_plus_iff diff -r f2bb6541f532 -r ad093e4638e2 src/HOL/HOLCF/LowerPD.thy --- a/src/HOL/HOLCF/LowerPD.thy Thu Dec 23 12:20:09 2010 +0100 +++ b/src/HOL/HOLCF/LowerPD.thy Thu Dec 23 11:51:59 2010 -0800 @@ -132,14 +132,14 @@ abbreviation lower_add :: "'a lower_pd \ 'a lower_pd \ 'a lower_pd" - (infixl "+\" 65) where - "xs +\ ys == lower_plus\xs\ys" + (infixl "\\" 65) where + "xs \\ ys == lower_plus\xs\ys" syntax "_lower_pd" :: "args \ 'a lower_pd" ("{_}\") translations - "{x,xs}\" == "{x}\ +\ {xs}\" + "{x,xs}\" == "{x}\ \\ {xs}\" "{x}\" == "CONST lower_unit\x" lemma lower_unit_Rep_compact_basis [simp]: @@ -148,23 +148,23 @@ by (simp add: compact_basis.extension_principal PDUnit_lower_mono) lemma lower_plus_principal [simp]: - "lower_principal t +\ lower_principal u = lower_principal (PDPlus t u)" + "lower_principal t \\ lower_principal u = lower_principal (PDPlus t u)" unfolding lower_plus_def by (simp add: lower_pd.extension_principal lower_pd.extension_mono PDPlus_lower_mono) interpretation lower_add: semilattice lower_add proof fix xs ys zs :: "'a lower_pd" - show "(xs +\ ys) +\ zs = xs +\ (ys +\ zs)" + show "(xs \\ ys) \\ zs = xs \\ (ys \\ zs)" apply (induct xs ys arbitrary: zs rule: lower_pd.principal_induct2, simp, simp) apply (rule_tac x=zs in lower_pd.principal_induct, simp) apply (simp add: PDPlus_assoc) done - show "xs +\ ys = ys +\ xs" + show "xs \\ ys = ys \\ xs" apply (induct xs ys rule: lower_pd.principal_induct2, simp, simp) apply (simp add: PDPlus_commute) done - show "xs +\ xs = xs" + show "xs \\ xs = xs" apply (induct xs rule: lower_pd.principal_induct, simp) apply (simp add: PDPlus_absorb) done @@ -184,21 +184,21 @@ lemmas lower_plus_aci = lower_plus_ac lower_plus_absorb lower_plus_left_absorb -lemma lower_plus_below1: "xs \ xs +\ ys" +lemma lower_plus_below1: "xs \ xs \\ ys" apply (induct xs ys rule: lower_pd.principal_induct2, simp, simp) apply (simp add: PDPlus_lower_le) done -lemma lower_plus_below2: "ys \ xs +\ ys" +lemma lower_plus_below2: "ys \ xs \\ ys" by (subst lower_plus_commute, rule lower_plus_below1) -lemma lower_plus_least: "\xs \ zs; ys \ zs\ \ xs +\ ys \ zs" +lemma lower_plus_least: "\xs \ zs; ys \ zs\ \ xs \\ ys \ zs" apply (subst lower_plus_absorb [of zs, symmetric]) apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) done lemma lower_plus_below_iff [simp]: - "xs +\ ys \ zs \ xs \ zs \ ys \ zs" + "xs \\ ys \ zs \ xs \ zs \ ys \ zs" apply safe apply (erule below_trans [OF lower_plus_below1]) apply (erule below_trans [OF lower_plus_below2]) @@ -206,7 +206,7 @@ done lemma lower_unit_below_plus_iff [simp]: - "{x}\ \ ys +\ zs \ {x}\ \ ys \ {x}\ \ zs" + "{x}\ \ ys \\ zs \ {x}\ \ ys \ {x}\ \ zs" apply (induct x rule: compact_basis.principal_induct, simp) apply (induct ys rule: lower_pd.principal_induct, simp) apply (induct zs rule: lower_pd.principal_induct, simp) @@ -235,19 +235,19 @@ unfolding lower_unit_strict [symmetric] by (rule lower_unit_eq_iff) lemma lower_plus_bottom_iff [simp]: - "xs +\ ys = \ \ xs = \ \ ys = \" + "xs \\ ys = \ \ xs = \ \ ys = \" apply safe apply (rule UU_I, erule subst, rule lower_plus_below1) apply (rule UU_I, erule subst, rule lower_plus_below2) apply (rule lower_plus_absorb) done -lemma lower_plus_strict1 [simp]: "\ +\ ys = ys" +lemma lower_plus_strict1 [simp]: "\ \\ ys = ys" apply (rule below_antisym [OF _ lower_plus_below2]) apply (simp add: lower_plus_least) done -lemma lower_plus_strict2 [simp]: "xs +\ \ = xs" +lemma lower_plus_strict2 [simp]: "xs \\ \ = xs" apply (rule below_antisym [OF _ lower_plus_below1]) apply (simp add: lower_plus_least) done @@ -262,7 +262,7 @@ done lemma compact_lower_plus [simp]: - "\compact xs; compact ys\ \ compact (xs +\ ys)" + "\compact xs; compact ys\ \ compact (xs \\ ys)" by (auto dest!: lower_pd.compact_imp_principal) @@ -272,7 +272,7 @@ assumes P: "adm P" assumes unit: "\x. P {x}\" assumes insert: - "\x ys. \P {x}\; P ys\ \ P ({x}\ +\ ys)" + "\x ys. \P {x}\; P ys\ \ P ({x}\ \\ ys)" shows "P (xs::'a lower_pd)" apply (induct xs rule: lower_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct1) @@ -287,7 +287,7 @@ [case_names adm lower_unit lower_plus, induct type: lower_pd]: assumes P: "adm P" assumes unit: "\x. P {x}\" - assumes plus: "\xs ys. \P xs; P ys\ \ P (xs +\ ys)" + assumes plus: "\xs ys. \P xs; P ys\ \ P (xs \\ ys)" shows "P (xs::'a lower_pd)" apply (induct xs rule: lower_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct) @@ -303,10 +303,10 @@ "'a pd_basis \ ('a \ 'b lower_pd) \ 'b lower_pd" where "lower_bind_basis = fold_pd (\a. \ f. f\(Rep_compact_basis a)) - (\x y. \ f. x\f +\ y\f)" + (\x y. \ f. x\f \\ y\f)" lemma ACI_lower_bind: - "class.ab_semigroup_idem_mult (\x y. \ f. x\f +\ y\f)" + "class.ab_semigroup_idem_mult (\x y. \ f. x\f \\ y\f)" apply unfold_locales apply (simp add: lower_plus_assoc) apply (simp add: lower_plus_commute) @@ -317,7 +317,7 @@ "lower_bind_basis (PDUnit a) = (\ f. f\(Rep_compact_basis a))" "lower_bind_basis (PDPlus t u) = - (\ f. lower_bind_basis t\f +\ lower_bind_basis u\f)" + (\ f. lower_bind_basis t\f \\ lower_bind_basis u\f)" unfolding lower_bind_basis_def apply - apply (rule fold_pd_PDUnit [OF ACI_lower_bind]) @@ -356,7 +356,7 @@ by (induct x rule: compact_basis.principal_induct, simp, simp) lemma lower_bind_plus [simp]: - "lower_bind\(xs +\ ys)\f = lower_bind\xs\f +\ lower_bind\ys\f" + "lower_bind\(xs \\ ys)\f = lower_bind\xs\f \\ lower_bind\ys\f" by (induct xs ys rule: lower_pd.principal_induct2, simp, simp, simp) lemma lower_bind_strict [simp]: "lower_bind\\\f = f\\" @@ -378,7 +378,7 @@ unfolding lower_map_def by simp lemma lower_map_plus [simp]: - "lower_map\f\(xs +\ ys) = lower_map\f\xs +\ lower_map\f\ys" + "lower_map\f\(xs \\ ys) = lower_map\f\xs \\ lower_map\f\ys" unfolding lower_map_def by simp lemma lower_map_bottom [simp]: "lower_map\f\\ = {f\\}\" @@ -484,7 +484,7 @@ unfolding lower_join_def by simp lemma lower_join_plus [simp]: - "lower_join\(xss +\ yss) = lower_join\xss +\ lower_join\yss" + "lower_join\(xss \\ yss) = lower_join\xss \\ lower_join\yss" unfolding lower_join_def by simp lemma lower_join_bottom [simp]: "lower_join\\ = \" diff -r f2bb6541f532 -r ad093e4638e2 src/HOL/HOLCF/UpperPD.thy --- a/src/HOL/HOLCF/UpperPD.thy Thu Dec 23 12:20:09 2010 +0100 +++ b/src/HOL/HOLCF/UpperPD.thy Thu Dec 23 11:51:59 2010 -0800 @@ -130,14 +130,14 @@ abbreviation upper_add :: "'a upper_pd \ 'a upper_pd \ 'a upper_pd" - (infixl "+\" 65) where - "xs +\ ys == upper_plus\xs\ys" + (infixl "\\" 65) where + "xs \\ ys == upper_plus\xs\ys" syntax "_upper_pd" :: "args \ 'a upper_pd" ("{_}\") translations - "{x,xs}\" == "{x}\ +\ {xs}\" + "{x,xs}\" == "{x}\ \\ {xs}\" "{x}\" == "CONST upper_unit\x" lemma upper_unit_Rep_compact_basis [simp]: @@ -146,23 +146,23 @@ by (simp add: compact_basis.extension_principal PDUnit_upper_mono) lemma upper_plus_principal [simp]: - "upper_principal t +\ upper_principal u = upper_principal (PDPlus t u)" + "upper_principal t \\ upper_principal u = upper_principal (PDPlus t u)" unfolding upper_plus_def by (simp add: upper_pd.extension_principal upper_pd.extension_mono PDPlus_upper_mono) interpretation upper_add: semilattice upper_add proof fix xs ys zs :: "'a upper_pd" - show "(xs +\ ys) +\ zs = xs +\ (ys +\ zs)" + show "(xs \\ ys) \\ zs = xs \\ (ys \\ zs)" apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp) apply (rule_tac x=zs in upper_pd.principal_induct, simp) apply (simp add: PDPlus_assoc) done - show "xs +\ ys = ys +\ xs" + show "xs \\ ys = ys \\ xs" apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) apply (simp add: PDPlus_commute) done - show "xs +\ xs = xs" + show "xs \\ xs = xs" apply (induct xs rule: upper_pd.principal_induct, simp) apply (simp add: PDPlus_absorb) done @@ -182,21 +182,21 @@ lemmas upper_plus_aci = upper_plus_ac upper_plus_absorb upper_plus_left_absorb -lemma upper_plus_below1: "xs +\ ys \ xs" +lemma upper_plus_below1: "xs \\ ys \ xs" apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) apply (simp add: PDPlus_upper_le) done -lemma upper_plus_below2: "xs +\ ys \ ys" +lemma upper_plus_below2: "xs \\ ys \ ys" by (subst upper_plus_commute, rule upper_plus_below1) -lemma upper_plus_greatest: "\xs \ ys; xs \ zs\ \ xs \ ys +\ zs" +lemma upper_plus_greatest: "\xs \ ys; xs \ zs\ \ xs \ ys \\ zs" apply (subst upper_plus_absorb [of xs, symmetric]) apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) done lemma upper_below_plus_iff [simp]: - "xs \ ys +\ zs \ xs \ ys \ xs \ zs" + "xs \ ys \\ zs \ xs \ ys \ xs \ zs" apply safe apply (erule below_trans [OF _ upper_plus_below1]) apply (erule below_trans [OF _ upper_plus_below2]) @@ -204,7 +204,7 @@ done lemma upper_plus_below_unit_iff [simp]: - "xs +\ ys \ {z}\ \ xs \ {z}\ \ ys \ {z}\" + "xs \\ ys \ {z}\ \ xs \ {z}\ \ ys \ {z}\" apply (induct xs rule: upper_pd.principal_induct, simp) apply (induct ys rule: upper_pd.principal_induct, simp) apply (induct z rule: compact_basis.principal_induct, simp) @@ -229,17 +229,17 @@ using upper_unit_Rep_compact_basis [of compact_bot] by (simp add: inst_upper_pd_pcpo) -lemma upper_plus_strict1 [simp]: "\ +\ ys = \" +lemma upper_plus_strict1 [simp]: "\ \\ ys = \" by (rule UU_I, rule upper_plus_below1) -lemma upper_plus_strict2 [simp]: "xs +\ \ = \" +lemma upper_plus_strict2 [simp]: "xs \\ \ = \" by (rule UU_I, rule upper_plus_below2) lemma upper_unit_bottom_iff [simp]: "{x}\ = \ \ x = \" unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) lemma upper_plus_bottom_iff [simp]: - "xs +\ ys = \ \ xs = \ \ ys = \" + "xs \\ ys = \ \ xs = \ \ ys = \" apply (rule iffI) apply (erule rev_mp) apply (rule upper_pd.principal_induct2 [where x=xs and y=ys], simp, simp) @@ -258,7 +258,7 @@ done lemma compact_upper_plus [simp]: - "\compact xs; compact ys\ \ compact (xs +\ ys)" + "\compact xs; compact ys\ \ compact (xs \\ ys)" by (auto dest!: upper_pd.compact_imp_principal) @@ -267,7 +267,7 @@ lemma upper_pd_induct1: assumes P: "adm P" assumes unit: "\x. P {x}\" - assumes insert: "\x ys. \P {x}\; P ys\ \ P ({x}\ +\ ys)" + assumes insert: "\x ys. \P {x}\; P ys\ \ P ({x}\ \\ ys)" shows "P (xs::'a upper_pd)" apply (induct xs rule: upper_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct1) @@ -282,7 +282,7 @@ [case_names adm upper_unit upper_plus, induct type: upper_pd]: assumes P: "adm P" assumes unit: "\x. P {x}\" - assumes plus: "\xs ys. \P xs; P ys\ \ P (xs +\ ys)" + assumes plus: "\xs ys. \P xs; P ys\ \ P (xs \\ ys)" shows "P (xs::'a upper_pd)" apply (induct xs rule: upper_pd.principal_induct, rule P) apply (induct_tac a rule: pd_basis_induct) @@ -298,10 +298,10 @@ "'a pd_basis \ ('a \ 'b upper_pd) \ 'b upper_pd" where "upper_bind_basis = fold_pd (\a. \ f. f\(Rep_compact_basis a)) - (\x y. \ f. x\f +\ y\f)" + (\x y. \ f. x\f \\ y\f)" lemma ACI_upper_bind: - "class.ab_semigroup_idem_mult (\x y. \ f. x\f +\ y\f)" + "class.ab_semigroup_idem_mult (\x y. \ f. x\f \\ y\f)" apply unfold_locales apply (simp add: upper_plus_assoc) apply (simp add: upper_plus_commute) @@ -312,7 +312,7 @@ "upper_bind_basis (PDUnit a) = (\ f. f\(Rep_compact_basis a))" "upper_bind_basis (PDPlus t u) = - (\ f. upper_bind_basis t\f +\ upper_bind_basis u\f)" + (\ f. upper_bind_basis t\f \\ upper_bind_basis u\f)" unfolding upper_bind_basis_def apply - apply (rule fold_pd_PDUnit [OF ACI_upper_bind]) @@ -351,7 +351,7 @@ by (induct x rule: compact_basis.principal_induct, simp, simp) lemma upper_bind_plus [simp]: - "upper_bind\(xs +\ ys)\f = upper_bind\xs\f +\ upper_bind\ys\f" + "upper_bind\(xs \\ ys)\f = upper_bind\xs\f \\ upper_bind\ys\f" by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp) lemma upper_bind_strict [simp]: "upper_bind\\\f = f\\" @@ -373,7 +373,7 @@ unfolding upper_map_def by simp lemma upper_map_plus [simp]: - "upper_map\f\(xs +\ ys) = upper_map\f\xs +\ upper_map\f\ys" + "upper_map\f\(xs \\ ys) = upper_map\f\xs \\ upper_map\f\ys" unfolding upper_map_def by simp lemma upper_map_bottom [simp]: "upper_map\f\\ = {f\\}\" @@ -479,7 +479,7 @@ unfolding upper_join_def by simp lemma upper_join_plus [simp]: - "upper_join\(xss +\ yss) = upper_join\xss +\ upper_join\yss" + "upper_join\(xss \\ yss) = upper_join\xss \\ upper_join\yss" unfolding upper_join_def by simp lemma upper_join_bottom [simp]: "upper_join\\ = \" diff -r f2bb6541f532 -r ad093e4638e2 src/HOL/HOLCF/ex/Powerdomain_ex.thy --- a/src/HOL/HOLCF/ex/Powerdomain_ex.thy Thu Dec 23 12:20:09 2010 +0100 +++ b/src/HOL/HOLCF/ex/Powerdomain_ex.thy Thu Dec 23 11:51:59 2010 -0800 @@ -62,7 +62,7 @@ pick :: "'a tree \ 'a convex_pd" where pick_Leaf: "pick\(Leaf\a) = {a}\" -| pick_Node: "pick\(Node\l\r) = pick\l +\ pick\r" +| pick_Node: "pick\(Node\l\r) = pick\l \\ pick\r" lemma pick_strict [simp]: "pick\\ = \" by fixrec_simp