# HG changeset patch # User nipkow # Date 1636729775 -3600 # Node ID adb10e840b712031d08ed4472315c33b0b4973b5 # Parent 8362a5b2c2dda1a04544e0a7210a514f63571b83# Parent dbac0ebb4a8518537a8e3792a7630f948e437dfd merged diff -r 8362a5b2c2dd -r adb10e840b71 src/Doc/Prog_Prove/Logic.thy --- a/src/Doc/Prog_Prove/Logic.thy Fri Nov 12 08:51:45 2021 +0100 +++ b/src/Doc/Prog_Prove/Logic.thy Fri Nov 12 16:09:35 2021 +0100 @@ -75,6 +75,8 @@ Theorems should be of the form \\ A\<^sub>1; \; A\<^sub>n \ \ A\, not \A\<^sub>1 \ \ \ A\<^sub>n \ A\. Both are logically equivalent but the first one works better when using the theorem in further proofs. + +The ASCII representation of \\\ and \\\ is \texttt{[|} and \texttt{|]}. \end{warn} \section{Sets} diff -r 8362a5b2c2dd -r adb10e840b71 src/Doc/Prog_Prove/Types_and_funs.thy --- a/src/Doc/Prog_Prove/Types_and_funs.thy Fri Nov 12 08:51:45 2021 +0100 +++ b/src/Doc/Prog_Prove/Types_and_funs.thy Fri Nov 12 16:09:35 2021 +0100 @@ -171,7 +171,7 @@ This customized induction rule can simplify inductive proofs. For example, \ -lemma "div2(n) = n div 2" +lemma "div2 n = n div 2" apply(induction n rule: div2.induct) txt\(where the infix \div\ is the predefined division operation) @@ -328,7 +328,7 @@ Thus the proof succeeds: \ -apply auto +apply(auto) done text\