# HG changeset patch # User haftmann # Date 1204054692 -3600 # Node ID ae2bf929e33c2318371180b71958b1c5c67e5235 # Parent 61cb176d0385fc031d9039f0238086b46e169551 moved some set lemmas to Set.thy diff -r 61cb176d0385 -r ae2bf929e33c src/HOL/Fun.thy --- a/src/HOL/Fun.thy Tue Feb 26 20:38:10 2008 +0100 +++ b/src/HOL/Fun.thy Tue Feb 26 20:38:12 2008 +0100 @@ -10,40 +10,45 @@ imports Set begin -constdefs - fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" - "fun_upd f a b == % x. if x=a then b else f x" - -nonterminals - updbinds updbind -syntax - "_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") - "" :: "updbind => updbinds" ("_") - "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") - "_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000,0] 900) +text{*As a simplification rule, it replaces all function equalities by + first-order equalities.*} +lemma expand_fun_eq: "f = g \ (\x. f x = g x)" +apply (rule iffI) +apply (simp (no_asm_simp)) +apply (rule ext) +apply (simp (no_asm_simp)) +done -translations - "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" - "f(x:=y)" == "fun_upd f x y" +lemma apply_inverse: + "f x =u \ (\x. P x \ g (f x) = x) \ P x \ x = g u" + by auto -(* Hint: to define the sum of two functions (or maps), use sum_case. - A nice infix syntax could be defined (in Datatype.thy or below) by -consts - fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80) -translations - "fun_sum" == sum_case -*) -definition - override_on :: "('a \ 'b) \ ('a \ 'b) \ 'a set \ 'a \ 'b" -where - "override_on f g A = (\a. if a \ A then g a else f a)" +subsection {* The Identity Function @{text id} *} definition id :: "'a \ 'a" where "id = (\x. x)" +lemma id_apply [simp]: "id x = x" + by (simp add: id_def) + +lemma image_ident [simp]: "(%x. x) ` Y = Y" +by blast + +lemma image_id [simp]: "id ` Y = Y" +by (simp add: id_def) + +lemma vimage_ident [simp]: "(%x. x) -` Y = Y" +by blast + +lemma vimage_id [simp]: "id -` A = A" +by (simp add: id_def) + + +subsection {* The Composition Operator @{text "f \ g"} *} + definition comp :: "('b \ 'c) \ ('a \ 'b) \ 'a \ 'c" (infixl "o" 55) where @@ -58,63 +63,6 @@ text{*compatibility*} lemmas o_def = comp_def -constdefs - inj_on :: "['a => 'b, 'a set] => bool" -- "injective" - "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" - -definition - bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective" - "bij_betw f A B \ inj_on f A & f ` A = B" - - -text{*A common special case: functions injective over the entire domain type.*} - -abbreviation - "inj f == inj_on f UNIV" - -constdefs - surj :: "('a => 'b) => bool" (*surjective*) - "surj f == ! y. ? x. y=f(x)" - - bij :: "('a => 'b) => bool" (*bijective*) - "bij f == inj f & surj f" - - - -text{*As a simplification rule, it replaces all function equalities by - first-order equalities.*} -lemma expand_fun_eq: "f = g \ (\x. f x = g x)" -apply (rule iffI) -apply (simp (no_asm_simp)) -apply (rule ext) -apply (simp (no_asm_simp)) -done - -lemma apply_inverse: - "[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)" -by auto - - -text{*The Identity Function: @{term id}*} -lemma id_apply [simp]: "id x = x" -by (simp add: id_def) - -lemma inj_on_id[simp]: "inj_on id A" -by (simp add: inj_on_def) - -lemma inj_on_id2[simp]: "inj_on (%x. x) A" -by (simp add: inj_on_def) - -lemma surj_id[simp]: "surj id" -by (simp add: surj_def) - -lemma bij_id[simp]: "bij id" -by (simp add: bij_def inj_on_id surj_id) - - - -subsection{*The Composition Operator: @{term "f \ g"}*} - lemma o_apply [simp]: "(f o g) x = f (g x)" by (simp add: comp_def) @@ -130,17 +78,36 @@ lemma image_compose: "(f o g) ` r = f`(g`r)" by (simp add: comp_def, blast) -lemma image_eq_UN: "f`A = (UN x:A. {f x})" -by blast - lemma UN_o: "UNION A (g o f) = UNION (f`A) g" by (unfold comp_def, blast) -subsection{*The Injectivity Predicate, @{term inj}*} +subsection {* Injectivity and Surjectivity *} + +constdefs + inj_on :: "['a => 'b, 'a set] => bool" -- "injective" + "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" + +text{*A common special case: functions injective over the entire domain type.*} + +abbreviation + "inj f == inj_on f UNIV" -text{*NB: @{term inj} now just translates to @{term inj_on}*} +definition + bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective" + "bij_betw f A B \ inj_on f A & f ` A = B" + +constdefs + surj :: "('a => 'b) => bool" (*surjective*) + "surj f == ! y. ? x. y=f(x)" + bij :: "('a => 'b) => bool" (*bijective*) + "bij f == inj f & surj f" + +lemma injI: + assumes "\x y. f x = f y \ x = y" + shows "inj f" + using assms unfolding inj_on_def by auto text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*} lemma datatype_injI: @@ -157,8 +124,17 @@ lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" by (force simp add: inj_on_def) +lemma inj_on_id[simp]: "inj_on id A" + by (simp add: inj_on_def) -subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*} +lemma inj_on_id2[simp]: "inj_on (%x. x) A" +by (simp add: inj_on_def) + +lemma surj_id[simp]: "surj id" +by (simp add: surj_def) + +lemma bij_id[simp]: "bij id" +by (simp add: bij_def inj_on_id surj_id) lemma inj_onI: "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" @@ -218,9 +194,6 @@ apply (blast) done - -subsection{*The Predicate @{term surj}: Surjectivity*} - lemma surjI: "(!! x. g(f x) = x) ==> surj g" apply (simp add: surj_def) apply (blast intro: sym) @@ -241,9 +214,6 @@ apply (drule_tac x = x in spec, blast) done - -subsection{*The Predicate @{const bij}: Bijectivity*} - lemma bijI: "[| inj f; surj f |] ==> bij f" by (simp add: bij_def) @@ -253,9 +223,6 @@ lemma bij_is_surj: "bij f ==> surj f" by (simp add: bij_def) - -subsection{*The Predicate @{const bij_betw}: Bijectivity*} - lemma bij_betw_imp_inj_on: "bij_betw f A B \ inj_on f A" by (simp add: bij_betw_def) @@ -290,34 +257,6 @@ ultimately show ?thesis by(auto simp:bij_betw_def) qed - -subsection{*Facts About the Identity Function*} - -text{*We seem to need both the @{term id} forms and the @{term "\x. x"} -forms. The latter can arise by rewriting, while @{term id} may be used -explicitly.*} - -lemma image_ident [simp]: "(%x. x) ` Y = Y" -by blast - -lemma image_id [simp]: "id ` Y = Y" -by (simp add: id_def) - -lemma vimage_ident [simp]: "(%x. x) -` Y = Y" -by blast - -lemma vimage_id [simp]: "id -` A = A" -by (simp add: id_def) - -lemma vimage_image_eq [noatp]: "f -` (f ` A) = {y. EX x:A. f x = f y}" -by (blast intro: sym) - -lemma image_vimage_subset: "f ` (f -` A) <= A" -by blast - -lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" -by blast - lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" by (simp add: surj_range) @@ -337,12 +276,6 @@ apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) done -lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" -by blast - -lemma image_diff_subset: "f`A - f`B <= f`(A - B)" -by blast - lemma inj_on_image_Int: "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" apply (simp add: inj_on_def, blast) @@ -368,9 +301,6 @@ lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" by (blast dest: injD) -lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" -by blast - (*injectivity's required. Left-to-right inclusion holds even if A is empty*) lemma image_INT: "[| inj_on f C; ALL x:A. B x <= C; j:A |] @@ -400,6 +330,30 @@ subsection{*Function Updating*} +constdefs + fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" + "fun_upd f a b == % x. if x=a then b else f x" + +nonterminals + updbinds updbind +syntax + "_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") + "" :: "updbind => updbinds" ("_") + "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") + "_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000,0] 900) + +translations + "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" + "f(x:=y)" == "fun_upd f x y" + +(* Hint: to define the sum of two functions (or maps), use sum_case. + A nice infix syntax could be defined (in Datatype.thy or below) by +consts + fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80) +translations + "fun_sum" == sum_case +*) + lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" apply (simp add: fun_upd_def, safe) apply (erule subst) @@ -437,7 +391,13 @@ "f(x:=y) ` A = (if x \ A then insert y (f ` (A-{x})) else f ` A)" by auto -subsection{* @{text override_on} *} + +subsection {* @{text override_on} *} + +definition + override_on :: "('a \ 'b) \ ('a \ 'b) \ 'a set \ 'a \ 'b" +where + "override_on f g A = (\a. if a \ A then g a else f a)" lemma override_on_emptyset[simp]: "override_on f g {} = f" by(simp add:override_on_def) @@ -448,7 +408,8 @@ lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" by(simp add:override_on_def) -subsection{* swap *} + +subsection {* @{text swap} *} definition swap :: "'a \ 'a \ ('a \ 'b) \ ('a \ 'b)"