# HG changeset patch # User hoelzl # Date 1358180944 -3600 # Node ID ae630bab13dae6ab71cf510e46b44346a11c9374 # Parent b22ecedde1c7e665dcd102c154b9ade9be8bf6c1 renamed countable_basis_space to second_countable_topology diff -r b22ecedde1c7 -r ae630bab13da src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Mon Jan 14 17:16:59 2013 +0100 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Mon Jan 14 17:29:04 2013 +0100 @@ -220,11 +220,11 @@ end -class countable_basis_space = topological_space + +class second_countable_topology = topological_space + assumes ex_countable_basis: "\B::'a::topological_space set set. countable B \ topological_basis B" -sublocale countable_basis_space < countable_basis "SOME B. countable B \ topological_basis B" +sublocale second_countable_topology < countable_basis "SOME B. countable B \ topological_basis B" using someI_ex[OF ex_countable_basis] by unfold_locales safe subsection {* Polish spaces *} @@ -232,7 +232,7 @@ text {* Textbooks define Polish spaces as completely metrizable. We assume the topology to be complete for a given metric. *} -class polish_space = complete_space + countable_basis_space +class polish_space = complete_space + second_countable_topology subsection {* General notion of a topology as a value *} @@ -5411,7 +5411,7 @@ finally show ?thesis . qed -instance euclidean_space \ countable_basis_space +instance euclidean_space \ second_countable_topology proof def a \ "\f :: 'a \ (real \ real). \i\Basis. fst (f i) *\<^sub>R i" then have a: "\f. (\i\Basis. fst (f i) *\<^sub>R i) = a f" by simp diff -r b22ecedde1c7 -r ae630bab13da src/HOL/Probability/Borel_Space.thy --- a/src/HOL/Probability/Borel_Space.thy Mon Jan 14 17:16:59 2013 +0100 +++ b/src/HOL/Probability/Borel_Space.thy Mon Jan 14 17:29:04 2013 +0100 @@ -172,7 +172,7 @@ qed auto qed (metis A B topological_basis_open open_Times) -instance prod :: (countable_basis_space, countable_basis_space) countable_basis_space +instance prod :: (second_countable_topology, second_countable_topology) second_countable_topology proof obtain A :: "'a set set" where "countable A" "topological_basis A" using ex_countable_basis by auto @@ -184,7 +184,7 @@ qed lemma borel_measurable_Pair[measurable (raw)]: - fixes f :: "'a \ 'b::countable_basis_space" and g :: "'a \ 'c::countable_basis_space" + fixes f :: "'a \ 'b::second_countable_topology" and g :: "'a \ 'c::second_countable_topology" assumes f[measurable]: "f \ borel_measurable M" assumes g[measurable]: "g \ borel_measurable M" shows "(\x. (f x, g x)) \ borel_measurable M" @@ -257,7 +257,7 @@ qed lemma borel_measurable_continuous_Pair: - fixes f :: "'a \ 'b::countable_basis_space" and g :: "'a \ 'c::countable_basis_space" + fixes f :: "'a \ 'b::second_countable_topology" and g :: "'a \ 'c::second_countable_topology" assumes [measurable]: "f \ borel_measurable M" assumes [measurable]: "g \ borel_measurable M" assumes H: "continuous_on UNIV (\x. H (fst x) (snd x))" @@ -271,7 +271,7 @@ section "Borel spaces on euclidean spaces" lemma borel_measurable_inner[measurable (raw)]: - fixes f g :: "'a \ 'b::{countable_basis_space, real_inner}" + fixes f g :: "'a \ 'b::{second_countable_topology, real_inner}" assumes "f \ borel_measurable M" assumes "g \ borel_measurable M" shows "(\x. f x \ g x) \ borel_measurable M" diff -r b22ecedde1c7 -r ae630bab13da src/HOL/Probability/Discrete_Topology.thy --- a/src/HOL/Probability/Discrete_Topology.thy Mon Jan 14 17:16:59 2013 +0100 +++ b/src/HOL/Probability/Discrete_Topology.thy Mon Jan 14 17:29:04 2013 +0100 @@ -48,7 +48,7 @@ thus "\f::'a discrete \ nat. inj f" by blast qed -instance discrete :: (countable) countable_basis_space +instance discrete :: (countable) second_countable_topology proof let ?B = "(range (\n::nat. {from_nat n::'a discrete}))" have "topological_basis ?B" diff -r b22ecedde1c7 -r ae630bab13da src/HOL/Probability/Fin_Map.thy --- a/src/HOL/Probability/Fin_Map.thy Mon Jan 14 17:16:59 2013 +0100 +++ b/src/HOL/Probability/Fin_Map.thy Mon Jan 14 17:29:04 2013 +0100 @@ -1045,7 +1045,7 @@ lemma product_open_generates_sets_PiF_single: assumes "I \ {}" assumes [simp]: "finite I" - shows "sets (PiF {I} (\_. borel::'b::countable_basis_space measure)) = + shows "sets (PiF {I} (\_. borel::'b::second_countable_topology measure)) = sigma_sets (space (PiF {I} (\_. borel))) {Pi' I F |F. (\i\I. F i \ Collect open)}" proof - from open_incseqE[OF open_UNIV] guess S::"nat \ 'b set" . note S = this @@ -1064,7 +1064,7 @@ lemma product_open_generates_sets_PiM: assumes "I \ {}" assumes [simp]: "finite I" - shows "sets (PiM I (\_. borel::'b::countable_basis_space measure)) = + shows "sets (PiM I (\_. borel::'b::second_countable_topology measure)) = sigma_sets (space (PiM I (\_. borel))) {Pi\<^isub>E I F |F. \i\I. F i \ Collect open}" proof - from open_incseqE[OF open_UNIV] guess S::"nat \ 'b set" . note S = this diff -r b22ecedde1c7 -r ae630bab13da src/HOL/Probability/Regularity.thy --- a/src/HOL/Probability/Regularity.thy Mon Jan 14 17:16:59 2013 +0100 +++ b/src/HOL/Probability/Regularity.thy Mon Jan 14 17:29:04 2013 +0100 @@ -104,7 +104,7 @@ qed lemma - fixes M::"'a::{countable_basis_space, complete_space} measure" + fixes M::"'a::{second_countable_topology, complete_space} measure" assumes sb: "sets M = sets borel" assumes "emeasure M (space M) \ \" assumes "B \ sets borel"