# HG changeset patch # User nipkow # Date 1548667667 -3600 # Node ID aec42cee2521464873b2af232f4cd44067a0e734 # Parent bb0a354f6b462bb29530a71958775296aeacaa8b more canonical and less specialized syntax diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Abstract_Topology.thy Mon Jan 28 10:27:47 2019 +0100 @@ -3090,7 +3090,7 @@ assume \: "Ball \ (openin X) \ C \ \\" have "(\U\insert (topspace X - C) \. openin X U)" using XC \ by blast - moreover have "K \ \insert (topspace X - C) \" + moreover have "K \ \(insert (topspace X - C) \)" using \ XK compactin_subset_topspace by fastforce ultimately obtain \ where "finite \" "\ \ insert (topspace X - C) \" "K \ \\" using assms unfolding compactin_def by metis diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Arcwise_Connected.thy --- a/src/HOL/Analysis/Arcwise_Connected.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Arcwise_Connected.thy Mon Jan 28 10:27:47 2019 +0100 @@ -13,7 +13,7 @@ theorem Brouwer_reduction_theorem_gen: fixes S :: "'a::euclidean_space set" assumes "closed S" "\ S" - and \: "\F. \\n. closed(F n); \n. \(F n); \n. F(Suc n) \ F n\ \ \(\range F)" + and \: "\F. \\n. closed(F n); \n. \(F n); \n. F(Suc n) \ F n\ \ \(\(range F))" obtains T where "T \ S" "closed T" "\ T" "\U. \U \ S; closed U; \ U\ \ \ (U \ T)" proof - obtain B :: "nat \ 'a set" @@ -36,7 +36,7 @@ by (induction n) (auto simp: assms ASuc dest!: someI_ex) show ?thesis proof - show "\range A \ S" + show "\(range A) \ S" using \\n. A n \ S\ by blast show "closed (\(A ` UNIV))" using clo by blast @@ -81,7 +81,7 @@ corollary Brouwer_reduction_theorem: fixes S :: "'a::euclidean_space set" assumes "compact S" "\ S" "S \ {}" - and \: "\F. \\n. compact(F n); \n. F n \ {}; \n. \(F n); \n. F(Suc n) \ F n\ \ \(\range F)" + and \: "\F. \\n. compact(F n); \n. F n \ {}; \n. \(F n); \n. F(Suc n) \ F n\ \ \(\(range F))" obtains T where "T \ S" "compact T" "T \ {}" "\ T" "\U. \U \ S; closed U; U \ {}; \ U\ \ \ (U \ T)" proof (rule Brouwer_reduction_theorem_gen [of S "\T. T \ {} \ T \ S \ \ T"]) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Borel_Space.thy --- a/src/HOL/Analysis/Borel_Space.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Borel_Space.thy Mon Jan 28 10:27:47 2019 +0100 @@ -529,7 +529,7 @@ from ex_countable_basis obtain B :: "'a set set" where B: "\b. b \ B \ open b" "\X. open X \ \b\B. (\b) = X" and "countable B" by (auto simp: topological_basis_def) - from B(2)[OF K] obtain m where m: "\k. k \ K \ m k \ B" "\k. k \ K \ (\m k) = k" + from B(2)[OF K] obtain m where m: "\k. k \ K \ m k \ B" "\k. k \ K \ \(m k) = k" by metis define U where "U = (\k\K. m k)" with m have "countable U" diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Caratheodory.thy --- a/src/HOL/Analysis/Caratheodory.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Caratheodory.thy Mon Jan 28 10:27:47 2019 +0100 @@ -550,7 +550,7 @@ then show "\ (\C) = sum \ C" proof (induct C) case (insert c C) - from insert(1,2,4,5) have "\ (\insert c C) = \ c + \ (\C)" + from insert(1,2,4,5) have "\ (\(insert c C)) = \ c + \ (\C)" by (auto intro!: add simp: disjoint_def) with insert show ?case by (simp add: disjoint_def) @@ -712,7 +712,7 @@ from A C' \c \ C'\ have UN_eq: "(\i. A i) = c" by (auto simp: A_def) - have "\i::nat. \f::nat \ 'a set. \_r (A i) = (\j. \_r (f j)) \ disjoint_family f \ \range f = A i \ (\j. f j \ M)" + have "\i::nat. \f::nat \ 'a set. \_r (A i) = (\j. \_r (f j)) \ disjoint_family f \ \(range f) = A i \ (\j. f j \ M)" (is "\i. ?P i") proof fix i @@ -735,7 +735,7 @@ moreover have Ai_eq: "A i = (\xrange f = A i" + then have "\(range f) = A i" using f C Ai unfolding bij_betw_def by (auto simp add: f_def cong del: SUP_cong_simp) moreover diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Conformal_Mappings.thy --- a/src/HOL/Analysis/Conformal_Mappings.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Conformal_Mappings.thy Mon Jan 28 10:27:47 2019 +0100 @@ -457,7 +457,7 @@ ultimately show ?thesis by (rule *) qed - then have "open (f ` \components U)" + then have "open (f ` \(components U))" by (metis (no_types, lifting) imageE image_Union open_Union) then show ?thesis by force diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Elementary_Normed_Spaces.thy --- a/src/HOL/Analysis/Elementary_Normed_Spaces.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Elementary_Normed_Spaces.thy Mon Jan 28 10:27:47 2019 +0100 @@ -898,7 +898,7 @@ lemma compact_nest: fixes F :: "'a::linorder \ 'b::heine_borel set" assumes F: "\n. compact(F n)" "\n. F n \ {}" and mono: "\m n. m \ n \ F n \ F m" - shows "\range F \ {}" + shows "\(range F) \ {}" proof - have *: "\S T. S \ range F \ T \ range F \ S \ T \ T \ S" by (metis mono image_iff le_cases) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Elementary_Topology.thy --- a/src/HOL/Analysis/Elementary_Topology.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Elementary_Topology.thy Mon Jan 28 10:27:47 2019 +0100 @@ -2248,7 +2248,7 @@ using c by (intro exI[of _ "c`D"] exI[of _ "\(a`D)"] conjI) (auto intro!: open_INT) qed then obtain a d where a: "\x. x\s \ open (a x)" "s \ (\x\s. a x)" - and d: "\x. x \ s \ d x \ C \ finite (d x) \ a x \ t \ \d x" + and d: "\x. x \ s \ d x \ C \ finite (d x) \ a x \ t \ \(d x)" unfolding subset_eq UN_iff by metis moreover from compactE_image[OF \compact s\ a] @@ -2258,9 +2258,9 @@ { from s have "s \ t \ (\x\e. a x \ t)" by auto - also have "\ \ (\x\e. \d x)" + also have "\ \ (\x\e. \(d x))" using d \e \ s\ by (intro UN_mono) auto - finally have "s \ t \ (\x\e. \d x)" . + finally have "s \ t \ (\x\e. \(d x))" . } ultimately show "\C'\C. finite C' \ s \ t \ \C'" by (intro exI[of _ "(\x\e. d x)"]) (auto simp: subset_eq) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Finite_Product_Measure.thy --- a/src/HOL/Analysis/Finite_Product_Measure.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Finite_Product_Measure.thy Mon Jan 28 10:27:47 2019 +0100 @@ -970,7 +970,7 @@ obtain F where F: "\j. countable (F j)" "\j f. f \ F j \ f \ sets (M j)" "\j f. f \ F j \ emeasure (M j) f \ \" and - in_space: "\j. space (M j) = (\F j)" + in_space: "\j. space (M j) = \(F j)" using sigma_finite_countable by (metis subset_eq) moreover have "(\(Pi\<^sub>E I ` Pi\<^sub>E I F)) = space (Pi\<^sub>M I M)" using in_space by (auto simp: space_PiM PiE_iff intro!: PiE_choice[THEN iffD2]) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Function_Topology.thy --- a/src/HOL/Analysis/Function_Topology.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Function_Topology.thy Mon Jan 28 10:27:47 2019 +0100 @@ -671,7 +671,7 @@ let ?U = "\j. U j \ (if j = i then V else topspace(X j))" show ?case proof (intro exI conjI) - show "(\\<^sub>E i\I. topspace (X i)) \ \insert F \ = Pi\<^sub>E I ?U" + show "(\\<^sub>E i\I. topspace (X i)) \ \(insert F \) = Pi\<^sub>E I ?U" using eq PiE_mem \i \ I\ by (auto simp: \F = {f. f i \ V}\) fastforce next show "finite {i \ I. ?U i \ topspace (X i)}" diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Further_Topology.thy --- a/src/HOL/Analysis/Further_Topology.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Further_Topology.thy Mon Jan 28 10:27:47 2019 +0100 @@ -655,11 +655,11 @@ using contf apply (force simp: elim: continuous_on_subset) using contg apply (force simp: elim: continuous_on_subset) using fh gh insert.hyps pwX by fastforce - then show "continuous_on (\insert X \ - insert a C) (\a. if a \ X then f a else g a)" + then show "continuous_on (\(insert X \) - insert a C) (\a. if a \ X then f a else g a)" by (blast intro: continuous_on_subset) - show "\x\(\insert X \ - insert a C) \ K. (if x \ X then f x else g x) = h x" + show "\x\(\(insert X \) - insert a C) \ K. (if x \ X then f x else g x) = h x" using gh by (auto simp: fh) - show "(\a. if a \ X then f a else g a) ` (\insert X \ - insert a C) \ T" + show "(\a. if a \ X then f a else g a) ` (\(insert X \) - insert a C) \ T" using fim gim by auto force qed qed diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Polytope.thy --- a/src/HOL/Analysis/Polytope.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Polytope.thy Mon Jan 28 10:27:47 2019 +0100 @@ -468,28 +468,28 @@ by (simp add: aff_dim_le_DIM) next case (Suc n) - have fs: "\d (Suc n) face_of S" + have fs: "\(d (Suc n)) face_of S" by (meson Suc.prems cfaI dn_le_Suc dn_notempty face_of_Inter subsetCE) - have condn: "convex (\d n)" + have condn: "convex (\(d n))" using Suc.prems nat_le_linear not_less_eq_eq by (blast intro: face_of_imp_convex cfaI convex_Inter dest: dn_le_Suc) - have fdn: "\d (Suc n) face_of \d n" + have fdn: "\(d (Suc n)) face_of \(d n)" by (metis (no_types, lifting) Inter_anti_mono Suc.prems dSuc cfaI dn_le_Suc dn_notempty face_of_Inter face_of_imp_subset face_of_subset subset_iff subset_insertI) - have ne: "\d (Suc n) \ \d n" + have ne: "\(d (Suc n)) \ \(d n)" by (metis (no_types, lifting) Suc.prems Suc_leD c complete_lattice_class.Inf_insert dSuc dn_le_Suc less_irrefl order.trans) have *: "\m::int. \d. \d'::int. d < d' \ d' \ m - n \ d \ m - of_nat(n+1)" by arith - have "aff_dim (\d (Suc n)) < aff_dim (\d n)" + have "aff_dim (\(d (Suc n))) < aff_dim (\(d n))" by (rule face_of_aff_dim_lt [OF condn fdn ne]) - moreover have "aff_dim (\d n) \ int (DIM('a)) - int n" + moreover have "aff_dim (\(d n)) \ int (DIM('a)) - int n" using Suc by auto ultimately - have "aff_dim (\d (Suc n)) \ int (DIM('a)) - (n+1)" by arith + have "aff_dim (\(d (Suc n))) \ int (DIM('a)) - (n+1)" by arith then show ?case by linarith qed - have "aff_dim (\d (DIM('a) + 2)) \ -2" + have "aff_dim (\(d (DIM('a) + 2))) \ -2" using aff_dim_le [OF order_refl] by simp - with aff_dim_geq [of "\d (DIM('a) + 2)"] show ?thesis + with aff_dim_geq [of "\(d (DIM('a) + 2))"] show ?thesis using order.trans by fastforce next case False diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Radon_Nikodym.thy --- a/src/HOL/Analysis/Radon_Nikodym.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Radon_Nikodym.thy Mon Jan 28 10:27:47 2019 +0100 @@ -837,7 +837,7 @@ show "range (\(i, j). A i \ Q j) \ sets (density M f)" using A_in_sets by auto next - have "\range (\(i, j). A i \ Q j) = (\i j. A i \ Q j)" + have "\(range (\(i, j). A i \ Q j)) = (\i j. A i \ Q j)" by auto also have "\ = (\i. A i) \ space M" using Q by auto also have "(\i. A i) = space M" @@ -856,7 +856,7 @@ using x real by (auto simp: A_def ennreal_of_nat_eq_real_of_nat intro!: exI[of _ "Suc n"]) qed qed (auto simp: A_def) - finally show "\range (\(i, j). A i \ Q j) = space ?N" by simp + finally show "\(range (\(i, j). A i \ Q j)) = space ?N" by simp next fix X assume "X \ range (\(i, j). A i \ Q j)" then obtain i j where [simp]:"X = A i \ Q j" by auto diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Starlike.thy Mon Jan 28 10:27:47 2019 +0100 @@ -4866,7 +4866,7 @@ let ?\ = "insert (U \ V) ((\S. N - S) ` \)" obtain \ where "\ \ ?\" "finite \" "K \ \\" proof (rule compactE [OF \compact K\]) - show "K \ \insert (U \ V) ((-) N ` \)" + show "K \ \(insert (U \ V) ((-) N ` \))" using \K \ N\ ABeq \A \ U\ \B \ V\ by auto show "\B. B \ insert (U \ V) ((-) N ` \) \ open B" by (auto simp: \open U\ \open V\ open_Un \open N\ cc compact_imp_closed open_Diff) @@ -6818,7 +6818,7 @@ by metis obtain K where K: "closed K" "U \ K = S" using cin by (auto simp: closedin_closed) - have 1: "U \ \insert (- K) (F ` \)" + have 1: "U \ \(insert (- K) (F ` \))" by clarsimp (metis Int_iff Union_iff \U \ K = S\ \S \ \\\ subsetD intF) have 2: "\T. T \ insert (- K) (F ` \) \ open T" using \closed K\ by (auto simp: opF) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Analysis/Tagged_Division.thy --- a/src/HOL/Analysis/Tagged_Division.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Analysis/Tagged_Division.thy Mon Jan 28 10:27:47 2019 +0100 @@ -633,7 +633,7 @@ qed obtain q where q: "\x. x \ p \ q x division_of cbox a b" "\x. x \ p \ x \ q x" using bchoice[OF div_cbox] by blast - have "q x division_of \q x" if x: "x \ p" for x + have "q x division_of \(q x)" if x: "x \ p" for x apply (rule division_ofI) using division_ofD[OF q(1)[OF x]] by auto then have di: "\x. x \ p \ \d. d division_of \(q x - {x})" @@ -736,7 +736,7 @@ assumes "finite f" and "\p. p \ f \ p division_of (\p)" and "\k1 k2. k1 \ \f \ k2 \ \f \ k1 \ k2 \ interior k1 \ interior k2 = {}" - shows "\f division_of \\f" + shows "\f division_of \(\f)" using assms by (auto intro!: division_ofI) lemma elementary_union_interval: @@ -781,7 +781,7 @@ by auto show "finite ?D" using "*" pdiv(1) q(1) by auto - have "\?D = (\x\p. \insert (cbox a b) (q x))" + have "\?D = (\x\p. \(insert (cbox a b) (q x)))" by auto also have "... = \{cbox a b \ t |t. t \ p}" using q(6) by auto @@ -847,7 +847,7 @@ from assms(2)[OF as(4)] obtain a b where x: "x = cbox a b" by blast have *: "\F = \p" using division_ofD[OF p] by auto - show "\p. p division_of \insert x F" + show "\p. p division_of \(insert x F)" using elementary_union_interval[OF p[unfolded *], of a b] unfolding Union_insert x * by metis qed (insert assms, auto) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/BNF_Composition.thy --- a/src/HOL/BNF_Composition.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/BNF_Composition.thy Mon Jan 28 10:27:47 2019 +0100 @@ -75,7 +75,7 @@ lemma UN_image_subset: "\(f ` g x) \ X = (g x \ {x. f x \ X})" by blast -lemma comp_set_bd_Union_o_collect: "|\\((\f. f x) ` X)| \o hbd \ |(Union \ collect X) x| \o hbd" +lemma comp_set_bd_Union_o_collect: "|\(\((\f. f x) ` X))| \o hbd \ |(Union \ collect X) x| \o hbd" by (unfold comp_apply collect_def) simp lemma Collect_inj: "Collect P = Collect Q \ P = Q" diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Complete_Lattices.thy Mon Jan 28 10:27:47 2019 +0100 @@ -15,10 +15,10 @@ subsection \Syntactic infimum and supremum operations\ class Inf = - fixes Inf :: "'a set \ 'a" ("\ _" [900] 900) + fixes Inf :: "'a set \ 'a" ("\") class Sup = - fixes Sup :: "'a set \ 'a" ("\ _" [900] 900) + fixes Sup :: "'a set \ 'a" ("\") syntax (ASCII) "_INF1" :: "pttrns \ 'b \ 'b" ("(3INF _./ _)" [0, 10] 10) @@ -40,10 +40,10 @@ translations "\x y. f" \ "\x. \y. f" - "\x. f" \ "\CONST range (\x. f)" + "\x. f" \ "\(CONST range (\x. f))" "\x\A. f" \ "CONST Inf ((\x. f) ` A)" "\x y. f" \ "\x. \y. f" - "\x. f" \ "\CONST range (\x. f)" + "\x. f" \ "\(CONST range (\x. f))" "\x\A. f" \ "CONST Sup ((\x. f) ` A)" context Inf @@ -175,13 +175,13 @@ lemma SUP_le_iff: "(\i\A. f i) \ u \ (\i\A. f i \ u)" using Sup_le_iff [of "f ` A"] by simp -lemma Inf_insert [simp]: "\insert a A = a \ \A" +lemma Inf_insert [simp]: "\(insert a A) = a \ \A" by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower) lemma INF_insert [simp]: "(\x\insert a A. f x) = f a \ \(f ` A)" by (simp cong del: INF_cong_simp) -lemma Sup_insert [simp]: "\insert a A = a \ \A" +lemma Sup_insert [simp]: "\(insert a A) = a \ \A" by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper) lemma SUP_insert [simp]: "(\x\insert a A. f x) = f a \ \(f ` A)" @@ -779,7 +779,7 @@ subsubsection \Inter\ -abbreviation Inter :: "'a set set \ 'a set" ("\ _" [900] 900) +abbreviation Inter :: "'a set set \ 'a set" ("\") where "\S \ \S" lemma Inter_eq: "\A = {x. \B \ A. x \ B}" @@ -860,7 +860,7 @@ translations "\x y. f" \ "\x. \y. f" - "\x. f" \ "\CONST range (\x. f)" + "\x. f" \ "\(CONST range (\x. f))" "\x\A. f" \ "CONST Inter ((\x. f) ` A)" lemma INTER_eq: "(\x\A. B x) = {y. \x\A. y \ B x}" @@ -933,7 +933,7 @@ subsubsection \Union\ -abbreviation Union :: "'a set set \ 'a set" ("\ _" [900] 900) +abbreviation Union :: "'a set set \ 'a set" ("\") where "\S \ \S" lemma Union_eq: "\A = {x. \B \ A. x \ B}" @@ -968,7 +968,7 @@ lemma Union_UNIV: "\UNIV = UNIV" by (fact Sup_UNIV) (* already simp *) -lemma Union_insert: "\insert a B = a \ \B" +lemma Union_insert: "\(insert a B) = a \ \B" by (fact Sup_insert) (* already simp *) lemma Union_Un_distrib [simp]: "\(A \ B) = \A \ \B" @@ -1017,7 +1017,7 @@ translations "\x y. f" \ "\x. \y. f" - "\x. f" \ "\CONST range (\x. f)" + "\x. f" \ "\(CONST range (\x. f))" "\x\A. f" \ "CONST Union ((\x. f) ` A)" text \ @@ -1268,7 +1268,7 @@ proof - from assms have "inj_on f A" by (rule bij_betw_imp_inj_on) - then have "inj_on f (\Pow A)" + then have "inj_on f (\(Pow A))" by simp then have "inj_on (image f) (Pow A)" by (rule inj_on_image) diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Library/Disjoint_Sets.thy --- a/src/HOL/Library/Disjoint_Sets.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Library/Disjoint_Sets.thy Mon Jan 28 10:27:47 2019 +0100 @@ -169,7 +169,7 @@ qed lemma disjoint_UN: - assumes F: "\i. i \ I \ disjoint (F i)" and *: "disjoint_family_on (\i. \F i) I" + assumes F: "\i. i \ I \ disjoint (F i)" and *: "disjoint_family_on (\i. \(F i)) I" shows "disjoint (\i\I. F i)" proof (safe intro!: disjointI del: equalityI) fix A B i j assume "A \ B" "A \ F i" "i \ I" "B \ F j" "j \ I" @@ -179,7 +179,7 @@ by (auto dest: disjointD) next assume "i \ j" - with * \i\I\ \j\I\ have "(\F i) \ (\F j) = {}" + with * \i\I\ \j\I\ have "(\(F i)) \ (\(F j)) = {}" by (rule disjoint_family_onD) with \A\F i\ \i\I\ \B\F j\ \j\I\ show "A \ B = {}" diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/Main.thy --- a/src/HOL/Main.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/Main.thy Mon Jan 28 10:27:47 2019 +0100 @@ -60,8 +60,8 @@ top ("\") and inf (infixl "\" 70) and sup (infixl "\" 65) and - Inf ("\ _" [900] 900) and - Sup ("\ _" [900] 900) and + Inf ("\") and + Sup ("\") and ordLeq2 (infix "<=o" 50) and ordLeq3 (infix "\o" 50) and ordLess2 (infix " \A") case True - have "\insert x A \ \A" using chain + have "\(insert x A) \ \A" using chain by(rule ccpo_Sup_least)(auto simp add: True intro: ccpo_Sup_upper[OF chain']) - hence "\insert x A = \A" + hence "\(insert x A) = \A" by(rule antisym)(blast intro: ccpo_Sup_upper[OF chain] ccpo_Sup_least[OF chain']) with \\A \ A\ show ?thesis by simp next case False with chainD[OF chain, of x "\A"] \\A \ A\ - have "\insert x A = x" + have "\(insert x A) = x" by(auto intro: antisym ccpo_Sup_least[OF chain] order_trans[OF ccpo_Sup_upper[OF chain']] ccpo_Sup_upper[OF chain]) thus ?thesis by simp qed diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/UNITY/Transformers.thy --- a/src/HOL/UNITY/Transformers.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/UNITY/Transformers.thy Mon Jan 28 10:27:47 2019 +0100 @@ -383,7 +383,7 @@ by (simp add: wens_single_finite_Suc [symmetric]) lemma wens_single_eq_Union: - "wens_single act B = \range (wens_single_finite act B)" + "wens_single act B = \(range (wens_single_finite act B))" by (simp add: wens_single_finite_def wens_single_def, blast) lemma wens_single_finite_eq_Union: diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/ex/Adhoc_Overloading_Examples.thy --- a/src/HOL/ex/Adhoc_Overloading_Examples.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/ex/Adhoc_Overloading_Examples.thy Mon Jan 28 10:27:47 2019 +0100 @@ -26,7 +26,7 @@ text \The set of variables of a term might be computed as follows.\ fun term_vars :: "('a, 'b) term \ 'b set" where "term_vars (Var x) = {x}" | - "term_vars (Fun f ts) = \set (map term_vars ts)" + "term_vars (Fun f ts) = \(set (map term_vars ts))" text \However, also for \emph{rules} (i.e., pairs of terms) and term rewrite systems (i.e., sets of rules), the set of variables makes diff -r bb0a354f6b46 -r aec42cee2521 src/HOL/ex/Perm_Fragments.thy --- a/src/HOL/ex/Perm_Fragments.thy Sun Jan 27 17:30:09 2019 +0100 +++ b/src/HOL/ex/Perm_Fragments.thy Mon Jan 28 10:27:47 2019 +0100 @@ -221,7 +221,7 @@ qed lemma Union_orbits [simp]: - "\orbits f = affected f" + "\(orbits f) = affected f" by (auto simp add: orbits.simps intro: in_orbitsI in_orbit_affected) lemma finite_orbits [simp]: