# HG changeset patch # User blanchet # Date 1298285438 -3600 # Node ID afd7405f1d7ec0434d25d7de032e614f70b5e148 # Parent 79a79460b70cf160822c743b579256f725588cd6 updated docs w.r.t. "nitpick_unfold" attribute diff -r 79a79460b70c -r afd7405f1d7e doc-src/Nitpick/nitpick.tex --- a/doc-src/Nitpick/nitpick.tex Mon Feb 21 11:50:38 2011 +0100 +++ b/doc-src/Nitpick/nitpick.tex Mon Feb 21 11:50:38 2011 +0100 @@ -2536,12 +2536,12 @@ following attributes to affect Nitpick's behavior: \begin{enum} -\flushitem{\textit{nitpick\_def}} +\flushitem{\textit{nitpick\_unfold}} \nopagebreak -This attribute specifies an alternative definition of a constant. The -alternative definition should be logically equivalent to the constant's actual -axiomatic definition and should be of the form +This attribute specifies an equation that Nitpick should use to expand a +constant. The equation should be logically equivalent to the constant's actual +definition and should be of the form \qquad $c~{?}x_1~\ldots~{?}x_n \,=\, t$, @@ -2550,7 +2550,8 @@ \qquad $c~{?}x_1~\ldots~{?}x_n \,\equiv\, t$, where ${?}x_1, \ldots, {?}x_n$ are distinct variables and $c$ does not occur in -$t$. +$t$. Each occurrence of $c$ in the problem is expanded to $\lambda x_1\,\ldots +x_n.\; t$. \flushitem{\textit{nitpick\_simp}} @@ -2603,8 +2604,8 @@ uses these theorems as the specification of the constant. \item[4.] Otherwise, it looks up the definition of the constant. If the -\textit{nitpick\_def} set associated with the constant is not empty, it uses the -latest rule added to the set as the definition of the constant; otherwise it +\textit{nitpick\_unfold} set associated with the constant is not empty, it uses +the latest rule added to the set as the definition of the constant; otherwise it uses the actual definition axiom. \begin{enum} @@ -2641,7 +2642,7 @@ definition as follows: \prew -\textbf{lemma} $\mathit{odd\_alt\_def}$ [\textit{nitpick\_def}]:\kern.4em ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$'' +\textbf{lemma} $\mathit{odd\_alt\_unfold}$ [\textit{nitpick\_unfold}]:\kern.4em ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$'' \postw Nitpick then expands all occurrences of $\mathit{odd}~n$ to $n~\textrm{mod}~2 @@ -2691,7 +2692,7 @@ and let Nitpick know about it: \prew -\textbf{lemma} \textit{c\_alt\_def} [\textit{nitpick\_def}]:\kern.4em ``$c \equiv c'$\kern2pt '' +\textbf{lemma} \textit{c\_alt\_unfold} [\textit{nitpick\_unfold}]:\kern.4em ``$c \equiv c'$\kern2pt '' \postw This ensures that Nitpick will substitute $c'$ for $c$ and use the (co)inductive