# HG changeset patch # User hoelzl # Date 1354555139 -3600 # Node ID b06b95a5fda214567474a619edd8b3481a1775ca # Parent df5553c4973f6b6f818dbe88cb263227daff8da8 rename filter_lim to filterlim to be consistent with filtermap diff -r df5553c4973f -r b06b95a5fda2 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Mon Dec 03 18:13:23 2012 +0100 +++ b/src/HOL/Limits.thy Mon Dec 03 18:18:59 2012 +0100 @@ -614,24 +614,24 @@ subsection {* Limits *} -definition filter_lim :: "('a \ 'b) \ 'b filter \ 'a filter \ bool" where - "filter_lim f F2 F1 \ filtermap f F1 \ F2" +definition filterlim :: "('a \ 'b) \ 'b filter \ 'a filter \ bool" where + "filterlim f F2 F1 \ filtermap f F1 \ F2" syntax "_LIM" :: "pttrns \ 'a \ 'b \ 'a \ bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10) translations - "LIM x F1. f :> F2" == "CONST filter_lim (%x. f) F2 F1" + "LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1" -lemma filter_limE: "(LIM x F1. f x :> F2) \ eventually P F2 \ eventually (\x. P (f x)) F1" - by (auto simp: filter_lim_def eventually_filtermap le_filter_def) +lemma filterlimE: "(LIM x F1. f x :> F2) \ eventually P F2 \ eventually (\x. P (f x)) F1" + by (auto simp: filterlim_def eventually_filtermap le_filter_def) -lemma filter_limI: "(\P. eventually P F2 \ eventually (\x. P (f x)) F1) \ (LIM x F1. f x :> F2)" - by (auto simp: filter_lim_def eventually_filtermap le_filter_def) +lemma filterlimI: "(\P. eventually P F2 \ eventually (\x. P (f x)) F1) \ (LIM x F1. f x :> F2)" + by (auto simp: filterlim_def eventually_filtermap le_filter_def) abbreviation (in topological_space) tendsto :: "('b \ 'a) \ 'a \ 'b filter \ bool" (infixr "--->" 55) where - "(f ---> l) F \ filter_lim f (nhds l) F" + "(f ---> l) F \ filterlim f (nhds l) F" ML {* structure Tendsto_Intros = Named_Thms @@ -644,7 +644,7 @@ setup Tendsto_Intros.setup lemma tendsto_def: "(f ---> l) F \ (\S. open S \ l \ S \ eventually (\x. f x \ S) F)" - unfolding filter_lim_def + unfolding filterlim_def proof safe fix S assume "open S" "l \ S" "filtermap f F \ nhds l" then show "eventually (\x. f x \ S) F" @@ -1075,20 +1075,20 @@ subsection {* Limits to @{const at_top} and @{const at_bot} *} -lemma filter_lim_at_top: +lemma filterlim_at_top: fixes f :: "'a \ ('b::dense_linorder)" shows "(LIM x F. f x :> at_top) \ (\Z. eventually (\x. Z < f x) F)" - by (safe elim!: filter_limE intro!: filter_limI) + by (safe elim!: filterlimE intro!: filterlimI) (auto simp: eventually_at_top_dense elim!: eventually_elim1) -lemma filter_lim_at_bot: +lemma filterlim_at_bot: fixes f :: "'a \ ('b::dense_linorder)" shows "(LIM x F. f x :> at_bot) \ (\Z. eventually (\x. f x < Z) F)" - by (safe elim!: filter_limE intro!: filter_limI) + by (safe elim!: filterlimE intro!: filterlimI) (auto simp: eventually_at_bot_dense elim!: eventually_elim1) -lemma filter_lim_real_sequentially: "LIM x sequentially. real x :> at_top" - unfolding filter_lim_at_top +lemma filterlim_real_sequentially: "LIM x sequentially. real x :> at_top" + unfolding filterlim_at_top apply (intro allI) apply (rule_tac c="natceiling (Z + 1)" in eventually_sequentiallyI) apply (auto simp: natceiling_le_eq) diff -r df5553c4973f -r b06b95a5fda2 src/HOL/Log.thy --- a/src/HOL/Log.thy Mon Dec 03 18:13:23 2012 +0100 +++ b/src/HOL/Log.thy Mon Dec 03 18:18:59 2012 +0100 @@ -364,7 +364,7 @@ proof (rule tendstoI) fix e :: real assume "0 < e" def Z \ "e powr (1 / s)" - from assms have "eventually (\x. Z < f x) F" by (simp add: filter_lim_at_top) + from assms have "eventually (\x. Z < f x) F" by (simp add: filterlim_at_top) moreover from assms have "\x. Z < x \ x powr s < Z powr s" by (auto simp: Z_def intro!: powr_less_mono2_neg) diff -r df5553c4973f -r b06b95a5fda2 src/HOL/NSA/HLim.thy --- a/src/HOL/NSA/HLim.thy Mon Dec 03 18:13:23 2012 +0100 +++ b/src/HOL/NSA/HLim.thy Mon Dec 03 18:18:59 2012 +0100 @@ -133,7 +133,7 @@ lemma NSLIM_self: "(%x. x) -- a --NS> a" by (simp add: NSLIM_def) -subsubsection {* Equivalence of @{term filter_lim} and @{term NSLIM} *} +subsubsection {* Equivalence of @{term filterlim} and @{term NSLIM} *} lemma LIM_NSLIM: assumes f: "f -- a --> L" shows "f -- a --NS> L"