# HG changeset patch # User desharna # Date 1718021395 -7200 # Node ID b10f7c981df6c1ed52c3a841f721ef8d60ea7646 # Parent 31b9dfbe534c85184833a8233f4d181050dde0bb renamed theorems diff -r 31b9dfbe534c -r b10f7c981df6 NEWS --- a/NEWS Mon Jun 10 13:44:46 2024 +0200 +++ b/NEWS Mon Jun 10 14:09:55 2024 +0200 @@ -11,9 +11,22 @@ - Renamed lemmas. Minor INCOMPATIBILITY. accp_wfPD ~> accp_wfpD accp_wfPI ~> accp_wfpI + wfPUNIVI ~> wfpUNIVI + wfP_SUP ~> wfp_SUP wfP_accp_iff ~> wfp_accp_iff + wfP_acyclicP ~> wfp_acyclicP + wfP_def ~> wfp_def + wfP_empty ~> wfp_empty + wfP_eq_minimal ~> wfp_eq_minimal wfP_if_convertible_to_nat ~> wfp_if_convertible_to_nat wfP_if_convertible_to_wfP ~> wfp_if_convertible_to_wfp + wfP_imp_asymp ~> wfp_imp_asymp + wfP_imp_irreflp ~> wfp_imp_irreflp + wfP_induct ~> wfp_induct + wfP_induct_rule ~> wfp_induct_rule + wfP_subset ~> wfp_subset + wfP_trancl ~> wfp_tranclp + wfP_wf_eq ~> wfp_wf_eq wf_acc_iff ~> wf_iff_acc diff -r 31b9dfbe534c -r b10f7c981df6 src/HOL/Fun_Def.thy --- a/src/HOL/Fun_Def.thy Mon Jun 10 13:44:46 2024 +0200 +++ b/src/HOL/Fun_Def.thy Mon Jun 10 14:09:55 2024 +0200 @@ -68,8 +68,8 @@ definition in_rel_def[simp]: "in_rel R x y \ (x, y) \ R" -lemma wf_in_rel: "wf R \ wfP (in_rel R)" - by (simp add: wfP_def) +lemma wf_in_rel: "wf R \ wfp (in_rel R)" + by (simp add: wfp_def) ML_file \Tools/Function/function_core.ML\ ML_file \Tools/Function/mutual.ML\ diff -r 31b9dfbe534c -r b10f7c981df6 src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Mon Jun 10 13:44:46 2024 +0200 +++ b/src/HOL/Library/Multiset.thy Mon Jun 10 14:09:55 2024 +0200 @@ -1548,7 +1548,7 @@ text \Well-foundedness of strict subset relation\ lemma wf_subset_mset_rel: "wf {(M, N :: 'a multiset). M \# N}" - using mset_subset_size wfP_def wfp_if_convertible_to_nat by blast + using mset_subset_size wfp_def wfp_if_convertible_to_nat by blast lemma wfP_subset_mset[simp]: "wfP (\#)" by (rule wf_subset_mset_rel[to_pred]) @@ -3246,7 +3246,7 @@ unfolding mult_def by (rule wf_trancl) (rule wf_mult1) lemma wfP_multp: "wfP r \ wfP (multp r)" - unfolding multp_def wfP_def + unfolding multp_def wfp_def by (simp add: wf_mult) diff -r 31b9dfbe534c -r b10f7c981df6 src/HOL/MicroJava/DFA/Kildall.thy --- a/src/HOL/MicroJava/DFA/Kildall.thy Mon Jun 10 13:44:46 2024 +0200 +++ b/src/HOL/MicroJava/DFA/Kildall.thy Mon Jun 10 14:09:55 2024 +0200 @@ -399,7 +399,7 @@ \ \Well-foundedness of the termination relation:\ apply (rule wf_lex_prod) apply (insert orderI [THEN acc_le_listI]) - apply (simp add: acc_def lesssub_def wfP_wf_eq [symmetric]) + apply (simp add: acc_def lesssub_def wfp_wf_eq [symmetric]) apply (rule wf_finite_psubset) \ \Loop decreases along termination relation:\ diff -r 31b9dfbe534c -r b10f7c981df6 src/HOL/Tools/Function/function_core.ML --- a/src/HOL/Tools/Function/function_core.ML Mon Jun 10 13:44:46 2024 +0200 +++ b/src/HOL/Tools/Function/function_core.ML Mon Jun 10 14:09:55 2024 +0200 @@ -715,7 +715,7 @@ (** Termination rule **) -val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule} +val wf_induct_rule = @{thm Wellfounded.wfp_induct_rule} val wf_in_rel = @{thm Fun_Def.wf_in_rel} val in_rel_def = @{thm Fun_Def.in_rel_def} diff -r 31b9dfbe534c -r b10f7c981df6 src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Mon Jun 10 13:44:46 2024 +0200 +++ b/src/HOL/Wellfounded.thy Mon Jun 10 14:09:55 2024 +0200 @@ -41,10 +41,10 @@ lemma wf_def: "wf r \ (\P. (\x. (\y. (y, x) \ r \ P y) \ P x) \ (\x. P x))" unfolding wf_on_def by simp -lemma wfP_def: "wfP r \ wf {(x, y). r x y}" +lemma wfp_def: "wfp r \ wf {(x, y). r x y}" unfolding wf_def wfp_on_def by simp -lemma wfP_wf_eq: "wfP (\x y. (x, y) \ r) = wf r" +lemma wfp_wf_eq: "wfp (\x y. (x, y) \ r) = wf r" using wfp_on_wf_on_eq . @@ -66,11 +66,11 @@ shows "P a" using assms by (auto intro: wf_on_induct[of UNIV]) -lemmas wfP_induct = wf_induct [to_pred] +lemmas wfp_induct = wf_induct [to_pred] lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf] -lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP] +lemmas wfp_induct_rule = wf_induct_rule [to_pred, induct set: wfp] lemma wf_on_iff_wf: "wf_on A r \ wf {(x, y) \ r. x \ A \ y \ A}" proof (rule iffI) @@ -129,7 +129,7 @@ lemma wfUNIVI: "(\P x. (\x. (\y. (y, x) \ r \ P y) \ P x) \ P x) \ wf r" unfolding wf_def by blast -lemmas wfPUNIVI = wfUNIVI [to_pred] +lemmas wfpUNIVI = wfUNIVI [to_pred] text \Restriction to domain \A\ and range \B\. If \r\ is well-founded over their intersection, then \wf r\.\ @@ -153,7 +153,7 @@ lemma wf_imp_asym: "wf r \ asym r" by (auto intro: asymI elim: wf_asym) -lemma wfP_imp_asymp: "wfP r \ asymp r" +lemma wfp_imp_asymp: "wfp r \ asymp r" by (rule wf_imp_asym[to_pred]) lemma wf_not_refl [simp]: "wf r \ (a, a) \ r" @@ -168,7 +168,7 @@ assumes "wf r" shows "irrefl r" using wf_irrefl [OF assms] by (auto simp add: irrefl_def) -lemma wfP_imp_irreflp: "wfP r \ irreflp r" +lemma wfp_imp_irreflp: "wfp r \ irreflp r" by (rule wf_imp_irrefl[to_pred]) lemma wf_wellorderI: @@ -182,8 +182,8 @@ lemma (in wellorder) wf: "wf {(x, y). x < y}" unfolding wf_def by (blast intro: less_induct) -lemma (in wellorder) wfP_less[simp]: "wfP (<)" - by (simp add: wf wfP_def) +lemma (in wellorder) wfP_less[simp]: "wfp (<)" + by (simp add: wf wfp_def) lemma (in wellorder) wfp_on_less[simp]: "wfp_on A (<)" unfolding wfp_on_def @@ -307,7 +307,7 @@ lemma wf_eq_minimal: "wf r \ (\Q x. x \ Q \ (\z\Q. \y. (y, z) \ r \ y \ Q))" unfolding wf_iff_ex_minimal by blast -lemmas wfP_eq_minimal = wf_eq_minimal [to_pred] +lemmas wfp_eq_minimal = wf_eq_minimal [to_pred] subsubsection \Antimonotonicity\ @@ -376,7 +376,7 @@ then show ?thesis unfolding wf_def by blast qed -lemmas wfP_trancl = wf_trancl [to_pred] +lemmas wfp_tranclp = wf_trancl [to_pred] lemma wf_converse_trancl: "wf (r\) \ wf ((r\<^sup>+)\)" apply (subst trancl_converse [symmetric]) @@ -388,16 +388,16 @@ lemma wf_subset: "wf r \ p \ r \ wf p" by (simp add: wf_eq_minimal) fast -lemmas wfP_subset = wf_subset [to_pred] +lemmas wfp_subset = wf_subset [to_pred] text \Well-foundedness of the empty relation\ lemma wf_empty [iff]: "wf {}" by (simp add: wf_def) -lemma wfP_empty [iff]: "wfP (\x y. False)" +lemma wfp_empty [iff]: "wfp (\x y. False)" proof - - have "wfP bot" + have "wfp bot" by (fact wf_empty[to_pred bot_empty_eq2]) then show ?thesis by (simp add: bot_fun_def) @@ -602,9 +602,9 @@ qed qed -lemma wfP_SUP: - "\i. wfP (r i) \ \i j. r i \ r j \ inf (Domainp (r i)) (Rangep (r j)) = bot \ - wfP (\(range r))" +lemma wfp_SUP: + "\i. wfp (r i) \ \i j. r i \ r j \ inf (Domainp (r i)) (Rangep (r j)) = bot \ + wfp (\(range r))" by (rule wf_UN[to_pred]) simp_all lemma wf_Union: @@ -757,7 +757,7 @@ lemma wf_acyclic: "wf r \ acyclic r" by (simp add: acyclic_def) (blast elim: wf_trancl [THEN wf_irrefl]) -lemmas wfP_acyclicP = wf_acyclic [to_pred] +lemmas wfp_acyclicP = wf_acyclic [to_pred] subsubsection \Wellfoundedness of finite acyclic relations\ @@ -922,7 +922,7 @@ by (blast dest: accp_downwards_aux) theorem accp_wfpI: "\x. accp r x \ wfp r" -proof (rule wfPUNIVI) +proof (rule wfpUNIVI) fix P x assume "\x. accp r x" "\x. (\y. r y x \ P y) \ P x" then show "P x" @@ -930,7 +930,7 @@ qed theorem accp_wfpD: "wfp r \ accp r x" - apply (erule wfP_induct_rule) + apply (erule wfp_induct_rule) apply (rule accp.accI) apply blast done