# HG changeset patch # User wenzelm # Date 1007582280 -3600 # Node ID b20a37eb8338087334a251a51204a2edfdae4323 # Parent 03c55bb0ee926aa793c66dd3f6b4aedc037fb958 sym [sym]; diff -r 03c55bb0ee92 -r b20a37eb8338 src/HOL/ex/Higher_Order_Logic.thy --- a/src/HOL/ex/Higher_Order_Logic.thy Wed Dec 05 15:45:24 2001 +0100 +++ b/src/HOL/ex/Higher_Order_Logic.thy Wed Dec 05 20:58:00 2001 +0100 @@ -56,7 +56,7 @@ ext [intro]: "(\x. f x = g x) \ f = g" iff [intro]: "(A \ B) \ (B \ A) \ A = B" -theorem sym [elim]: "x = y \ y = x" +theorem sym [sym]: "x = y \ y = x" proof - assume "x = y" thus "y = x" by (rule subst) (rule refl)