# HG changeset patch # User paulson # Date 1525261676 -3600 # Node ID b249fab48c76ee1d3ed0d54ce3961b6bcbd4fae4 # Parent 68def9274939821e2bae01db990a2cda4770d899 type class generalisations; some work on infinite products diff -r 68def9274939 -r b249fab48c76 src/HOL/Analysis/Infinite_Products.thy --- a/src/HOL/Analysis/Infinite_Products.thy Fri Apr 27 12:43:05 2018 +0100 +++ b/src/HOL/Analysis/Infinite_Products.thy Wed May 02 12:47:56 2018 +0100 @@ -1,6 +1,5 @@ -(* - File: HOL/Analysis/Infinite_Product.thy - Author: Manuel Eberl +(*File: HOL/Analysis/Infinite_Product.thy + Author: Manuel Eberl & LC Paulson Basic results about convergence and absolute convergence of infinite products and their connection to summability. @@ -9,7 +8,7 @@ theory Infinite_Products imports Complex_Main begin - + lemma sum_le_prod: fixes f :: "'a \ 'b :: linordered_semidom" assumes "\x. x \ A \ f x \ 0" @@ -51,8 +50,27 @@ by (rule tendsto_eq_intros refl | simp)+ qed auto +definition gen_has_prod :: "[nat \ 'a::{t2_space, comm_semiring_1}, nat, 'a] \ bool" + where "gen_has_prod f M p \ (\n. \i\n. f (i+M)) \ p \ p \ 0" + +text\The nonzero and zero cases, as in \emph{Complex Analysis} by Joseph Bak and Donald J.Newman, page 241\ +definition has_prod :: "(nat \ 'a::{t2_space, comm_semiring_1}) \ 'a \ bool" (infixr "has'_prod" 80) + where "f has_prod p \ gen_has_prod f 0 p \ (\i q. p = 0 \ f i = 0 \ gen_has_prod f (Suc i) q)" + definition convergent_prod :: "(nat \ 'a :: {t2_space,comm_semiring_1}) \ bool" where - "convergent_prod f \ (\M L. (\n. \i\n. f (i+M)) \ L \ L \ 0)" + "convergent_prod f \ \M p. gen_has_prod f M p" + +definition prodinf :: "(nat \ 'a::{t2_space, comm_semiring_1}) \ 'a" + (binder "\" 10) + where "prodinf f = (THE p. f has_prod p)" + +lemmas prod_defs = gen_has_prod_def has_prod_def convergent_prod_def prodinf_def + +lemma has_prod_subst[trans]: "f = g \ g has_prod z \ f has_prod z" + by simp + +lemma has_prod_cong: "(\n. f n = g n) \ f has_prod c \ g has_prod c" + by presburger lemma convergent_prod_altdef: fixes f :: "nat \ 'a :: {t2_space,comm_semiring_1}" @@ -60,7 +78,7 @@ proof assume "convergent_prod f" then obtain M L where *: "(\n. \i\n. f (i+M)) \ L" "L \ 0" - by (auto simp: convergent_prod_def) + by (auto simp: prod_defs) have "f i \ 0" if "i \ M" for i proof assume "f i = 0" @@ -79,7 +97,7 @@ qed with * show "(\M L. (\n\M. f n \ 0) \ (\n. \i\n. f (i+M)) \ L \ L \ 0)" by blast -qed (auto simp: convergent_prod_def) +qed (auto simp: prod_defs) definition abs_convergent_prod :: "(nat \ _) \ bool" where "abs_convergent_prod f \ convergent_prod (\i. 1 + norm (f i - 1))" @@ -101,12 +119,12 @@ qed qed (use L in simp_all) hence "L \ 0" by auto - with L show ?thesis unfolding abs_convergent_prod_def convergent_prod_def + with L show ?thesis unfolding abs_convergent_prod_def prod_defs by (intro exI[of _ "0::nat"] exI[of _ L]) auto qed lemma - fixes f :: "nat \ 'a :: {real_normed_div_algebra,idom}" + fixes f :: "nat \ 'a :: {topological_semigroup_mult,t2_space,idom}" assumes "convergent_prod f" shows convergent_prod_imp_convergent: "convergent (\n. \i\n. f i)" and convergent_prod_to_zero_iff: "(\n. \i\n. f i) \ 0 \ (\i. f i = 0)" @@ -141,8 +159,30 @@ qed qed +lemma convergent_prod_iff_nz_lim: + fixes f :: "nat \ 'a :: {topological_semigroup_mult,t2_space,idom}" + assumes "\i. f i \ 0" + shows "convergent_prod f \ (\L. (\n. \i\n. f i) \ L \ L \ 0)" + (is "?lhs \ ?rhs") +proof + assume ?lhs then show ?rhs + using assms convergentD convergent_prod_imp_convergent convergent_prod_to_zero_iff by blast +next + assume ?rhs then show ?lhs + unfolding prod_defs + by (rule_tac x="0" in exI) (auto simp: ) +qed + +lemma convergent_prod_iff_convergent: + fixes f :: "nat \ 'a :: {topological_semigroup_mult,t2_space,idom}" + assumes "\i. f i \ 0" + shows "convergent_prod f \ convergent (\n. \i\n. f i) \ lim (\n. \i\n. f i) \ 0" + by (force simp add: convergent_prod_iff_nz_lim assms convergent_def limI) + + lemma abs_convergent_prod_altdef: - "abs_convergent_prod f \ convergent (\n. \i\n. 1 + norm (f i - 1))" + fixes f :: "nat \ 'a :: {one,real_normed_vector}" + shows "abs_convergent_prod f \ convergent (\n. \i\n. 1 + norm (f i - 1))" proof assume "abs_convergent_prod f" thus "convergent (\n. \i\n. 1 + norm (f i - 1))" @@ -180,7 +220,7 @@ also have "norm (1::'a) = 1" by simp also note insert.IH also have "(\n\A. 1 + norm (f n)) - 1 + norm (f x) * (\x\A. 1 + norm (f x)) = - (\n\insert x A. 1 + norm (f n)) - 1" + (\n\insert x A. 1 + norm (f n)) - 1" using insert.hyps by (simp add: algebra_simps) finally show ?case by - (simp_all add: mult_left_mono) qed simp_all @@ -297,8 +337,9 @@ shows "convergent_prod f" proof - from assms obtain M L where "(\n. \k\n. f (k + (M + m))) \ L" "L \ 0" - by (auto simp: convergent_prod_def add.assoc) - thus "convergent_prod f" unfolding convergent_prod_def by blast + by (auto simp: prod_defs add.assoc) + thus "convergent_prod f" + unfolding prod_defs by blast qed lemma abs_convergent_prod_offset: @@ -334,7 +375,8 @@ by (intro tendsto_divide tendsto_const) auto hence "(\n. \k\n. f (k + M + m)) \ L / C" by simp moreover from \L \ 0\ have "L / C \ 0" by simp - ultimately show ?thesis unfolding convergent_prod_def by blast + ultimately show ?thesis + unfolding prod_defs by blast qed lemma abs_convergent_prod_ignore_initial_segment: @@ -343,11 +385,6 @@ using assms unfolding abs_convergent_prod_def by (rule convergent_prod_ignore_initial_segment) -lemma summable_LIMSEQ': - assumes "summable (f::nat\'a::{t2_space,comm_monoid_add})" - shows "(\n. \i\n. f i) \ suminf f" - using assms sums_def_le by blast - lemma abs_convergent_prod_imp_convergent_prod: fixes f :: "nat \ 'a :: {real_normed_div_algebra,complete_space,comm_ring_1}" assumes "abs_convergent_prod f" @@ -473,7 +510,98 @@ qed simp_all thus False by simp qed - with L show ?thesis by (auto simp: convergent_prod_def) + with L show ?thesis by (auto simp: prod_defs) +qed + +lemma convergent_prod_offset_0: + fixes f :: "nat \ 'a :: {idom,topological_semigroup_mult,t2_space}" + assumes "convergent_prod f" "\i. f i \ 0" + shows "\p. gen_has_prod f 0 p" + using assms + unfolding convergent_prod_def +proof (clarsimp simp: prod_defs) + fix M p + assume "(\n. \i\n. f (i + M)) \ p" "p \ 0" + then have "(\n. prod f {..i\n. f (i + M))) \ prod f {..i\n. f (i + M)) = prod f {..n+M}" for n + proof - + have "{..n+M} = {.. {M..n+M}" + by auto + then have "prod f {..n+M} = prod f {..i\n. f (i + M))" + by (metis (mono_tags, lifting) add.left_neutral atMost_atLeast0 prod_shift_bounds_cl_nat_ivl) + finally show ?thesis by metis + qed + ultimately have "(\n. prod f {..n}) \ prod f {..p. (\n. prod f {..n}) \ p \ p \ 0" + using \p \ 0\ assms + by (rule_tac x="prod f {.. 'a :: {idom,topological_semigroup_mult,t2_space}" + assumes "convergent_prod f" "\i. f i \ 0" + shows "prodinf f = lim (\n. \i\n. f i)" + using assms convergent_prod_offset_0 [OF assms] + by (simp add: prod_defs lim_def) (metis (no_types) assms(1) convergent_prod_to_zero_iff) + +lemma has_prod_one[simp, intro]: "(\n. 1) has_prod 1" + unfolding prod_defs by auto + +lemma convergent_prod_one[simp, intro]: "convergent_prod (\n. 1)" + unfolding prod_defs by auto + +lemma prodinf_cong: "(\n. f n = g n) \ prodinf f = prodinf g" + by presburger + +lemma convergent_prod_cong: + fixes f g :: "nat \ 'a::{field,topological_semigroup_mult,t2_space}" + assumes ev: "eventually (\x. f x = g x) sequentially" and f: "\i. f i \ 0" and g: "\i. g i \ 0" + shows "convergent_prod f = convergent_prod g" +proof - + from assms obtain N where N: "\n\N. f n = g n" + by (auto simp: eventually_at_top_linorder) + define C where "C = (\k 0" + by (simp add: f) + have *: "eventually (\n. prod f {..n} = C * prod g {..n}) sequentially" + using eventually_ge_at_top[of N] + proof eventually_elim + case (elim n) + then have "{..n} = {.. {N..n}" + by auto + also have "prod f ... = prod f {.. {N..n})" + by (intro prod.union_disjoint [symmetric]) auto + also from elim have "{.. {N..n} = {..n}" + by auto + finally show "prod f {..n} = C * prod g {..n}" . + qed + then have cong: "convergent (\n. prod f {..n}) = convergent (\n. C * prod g {..n})" + by (rule convergent_cong) + show ?thesis + proof + assume cf: "convergent_prod f" + then have "\ (\n. prod g {..n}) \ 0" + using tendsto_mult_left * convergent_prod_to_zero_iff f filterlim_cong by fastforce + then show "convergent_prod g" + by (metis convergent_mult_const_iff \C \ 0\ cong cf convergent_LIMSEQ_iff convergent_prod_iff_convergent convergent_prod_imp_convergent g) + next + assume cg: "convergent_prod g" + have "\a. C * a \ 0 \ (\n. prod g {..n}) \ a" + by (metis (no_types) \C \ 0\ cg convergent_prod_iff_nz_lim divide_eq_0_iff g nonzero_mult_div_cancel_right) + then show "convergent_prod f" + using "*" tendsto_mult_left filterlim_cong + by (fastforce simp add: convergent_prod_iff_nz_lim f) + qed qed end diff -r 68def9274939 -r b249fab48c76 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Fri Apr 27 12:43:05 2018 +0100 +++ b/src/HOL/Limits.thy Wed May 02 12:47:56 2018 +0100 @@ -787,15 +787,32 @@ lemmas tendsto_scaleR [tendsto_intros] = bounded_bilinear.tendsto [OF bounded_bilinear_scaleR] -lemmas tendsto_mult [tendsto_intros] = - bounded_bilinear.tendsto [OF bounded_bilinear_mult] + +text\Analogous type class for multiplication\ +class topological_semigroup_mult = topological_space + semigroup_mult + + assumes tendsto_mult_Pair: "LIM x (nhds a \\<^sub>F nhds b). fst x * snd x :> nhds (a * b)" + +instance real_normed_algebra < topological_semigroup_mult +proof + fix a b :: 'a + show "((\x. fst x * snd x) \ a * b) (nhds a \\<^sub>F nhds b)" + unfolding nhds_prod[symmetric] + using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"] + by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult]) +qed + +lemma tendsto_mult [tendsto_intros]: + fixes a b :: "'a::topological_semigroup_mult" + shows "(f \ a) F \ (g \ b) F \ ((\x. f x * g x) \ a * b) F" + using filterlim_compose[OF tendsto_mult_Pair, of "\x. (f x, g x)" a b F] + by (simp add: nhds_prod[symmetric] tendsto_Pair) lemma tendsto_mult_left: "(f \ l) F \ ((\x. c * (f x)) \ c * l) F" - for c :: "'a::real_normed_algebra" + for c :: "'a::topological_semigroup_mult" by (rule tendsto_mult [OF tendsto_const]) lemma tendsto_mult_right: "(f \ l) F \ ((\x. (f x) * c) \ l * c) F" - for c :: "'a::real_normed_algebra" + for c :: "'a::topological_semigroup_mult" by (rule tendsto_mult [OF _ tendsto_const]) lemmas continuous_of_real [continuous_intros] = @@ -2069,14 +2086,14 @@ qed lemma convergent_add: - fixes X Y :: "nat \ 'a::real_normed_vector" + fixes X Y :: "nat \ 'a::topological_monoid_add" assumes "convergent (\n. X n)" and "convergent (\n. Y n)" shows "convergent (\n. X n + Y n)" using assms unfolding convergent_def by (blast intro: tendsto_add) lemma convergent_sum: - fixes X :: "'a \ nat \ 'b::real_normed_vector" + fixes X :: "'a \ nat \ 'b::topological_comm_monoid_add" shows "(\i. i \ A \ convergent (\n. X i n)) \ convergent (\n. \i\A. X i n)" by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add) @@ -2091,16 +2108,13 @@ shows "convergent (\n. X n ** Y n)" using assms unfolding convergent_def by (blast intro: tendsto) -lemma convergent_minus_iff: "convergent X \ convergent (\n. - X n)" - for X :: "nat \ 'a::real_normed_vector" - apply (simp add: convergent_def) - apply (auto dest: tendsto_minus) - apply (drule tendsto_minus) - apply auto - done +lemma convergent_minus_iff: + fixes X :: "nat \ 'a::topological_group_add" + shows "convergent X \ convergent (\n. - X n)" + unfolding convergent_def by (force dest: tendsto_minus) lemma convergent_diff: - fixes X Y :: "nat \ 'a::real_normed_vector" + fixes X Y :: "nat \ 'a::topological_group_add" assumes "convergent (\n. X n)" assumes "convergent (\n. Y n)" shows "convergent (\n. X n - Y n)" @@ -2123,7 +2137,7 @@ unfolding convergent_def by (blast intro!: tendsto_of_real) lemma convergent_add_const_iff: - "convergent (\n. c + f n :: 'a::real_normed_vector) \ convergent f" + "convergent (\n. c + f n :: 'a::topological_ab_group_add) \ convergent f" proof assume "convergent (\n. c + f n)" from convergent_diff[OF this convergent_const[of c]] show "convergent f" @@ -2135,15 +2149,15 @@ qed lemma convergent_add_const_right_iff: - "convergent (\n. f n + c :: 'a::real_normed_vector) \ convergent f" + "convergent (\n. f n + c :: 'a::topological_ab_group_add) \ convergent f" using convergent_add_const_iff[of c f] by (simp add: add_ac) lemma convergent_diff_const_right_iff: - "convergent (\n. f n - c :: 'a::real_normed_vector) \ convergent f" + "convergent (\n. f n - c :: 'a::topological_ab_group_add) \ convergent f" using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac) lemma convergent_mult: - fixes X Y :: "nat \ 'a::real_normed_field" + fixes X Y :: "nat \ 'a::topological_semigroup_mult" assumes "convergent (\n. X n)" and "convergent (\n. Y n)" shows "convergent (\n. X n * Y n)" @@ -2151,7 +2165,7 @@ lemma convergent_mult_const_iff: assumes "c \ 0" - shows "convergent (\n. c * f n :: 'a::real_normed_field) \ convergent f" + shows "convergent (\n. c * f n :: 'a::{field,topological_semigroup_mult}) \ convergent f" proof assume "convergent (\n. c * f n)" from assms convergent_mult[OF this convergent_const[of "inverse c"]] @@ -2163,7 +2177,7 @@ qed lemma convergent_mult_const_right_iff: - fixes c :: "'a::real_normed_field" + fixes c :: "'a::{field,topological_semigroup_mult}" assumes "c \ 0" shows "convergent (\n. f n * c) \ convergent f" using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac) diff -r 68def9274939 -r b249fab48c76 src/HOL/Series.thy --- a/src/HOL/Series.thy Fri Apr 27 12:43:05 2018 +0100 +++ b/src/HOL/Series.thy Wed May 02 12:47:56 2018 +0100 @@ -170,6 +170,9 @@ lemma summable_LIMSEQ: "summable f \ (\n. \i suminf f" by (rule summable_sums [unfolded sums_def]) +lemma summable_LIMSEQ': "summable f \ (\n. \i\n. f i) \ suminf f" + using sums_def_le by blast + lemma sums_unique: "f sums s \ s = suminf f" by (metis limI suminf_eq_lim sums_def) diff -r 68def9274939 -r b249fab48c76 src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Fri Apr 27 12:43:05 2018 +0100 +++ b/src/HOL/Set_Interval.thy Wed May 02 12:47:56 2018 +0100 @@ -2459,6 +2459,17 @@ finally show ?thesis . qed +lemma prod_nat_group: "(\mEfficient folding over intervals\ diff -r 68def9274939 -r b249fab48c76 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Fri Apr 27 12:43:05 2018 +0100 +++ b/src/HOL/Topological_Spaces.thy Wed May 02 12:47:56 2018 +0100 @@ -3105,6 +3105,12 @@ class open_uniformity = "open" + uniformity + assumes open_uniformity: "\U. open U \ (\x\U. eventually (\(x', y). x' = x \ y \ U) uniformity)" +begin + +subclass topological_space + by standard (force elim: eventually_mono eventually_elim2 simp: split_beta' open_uniformity)+ + +end class uniform_space = open_uniformity + assumes uniformity_refl: "eventually E uniformity \ E (x, x)" @@ -3114,9 +3120,6 @@ \D. eventually D uniformity \ (\x y z. D (x, y) \ D (y, z) \ E (x, z))" begin -subclass topological_space - by standard (force elim: eventually_mono eventually_elim2 simp: split_beta' open_uniformity)+ - lemma uniformity_bot: "uniformity \ bot" using uniformity_refl by auto