# HG changeset patch # User haftmann # Date 1271327234 -7200 # Node ID b43b22f636659a86518bffe3416fd21a3316f8d6 # Parent 7bfbb247a5dfcf5d1bb87f1fb666eeaac33bf2ab theory RBT with abstract type of red-black trees backed by implementation RBT_Impl diff -r 7bfbb247a5df -r b43b22f63665 NEWS --- a/NEWS Wed Apr 14 22:18:10 2010 +0200 +++ b/NEWS Thu Apr 15 12:27:14 2010 +0200 @@ -74,6 +74,8 @@ *** Pure *** +* Code generator: simple concept for abstract datatypes obeying invariants. + * Local theory specifications may depend on extra type variables that are not present in the result type -- arguments TYPE('a) :: 'a itself are added internally. For example: @@ -106,6 +108,10 @@ *** HOL *** +* Library theory 'RBT' renamed to 'RBT_Impl'; new library theory 'RBT' +provides abstract red-black tree type which is backed by RBT_Impl +as implementation. INCOMPATIBILTY. + * Command 'typedef' now works within a local theory context -- without introducing dependencies on parameters or assumptions, which is not possible in Isabelle/Pure/HOL. Note that the logical environment may diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/Imperative_HOL/ex/SatChecker.thy --- a/src/HOL/Imperative_HOL/ex/SatChecker.thy Wed Apr 14 22:18:10 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/SatChecker.thy Thu Apr 15 12:27:14 2010 +0200 @@ -5,7 +5,7 @@ header {* An efficient checker for proofs from a SAT solver *} theory SatChecker -imports RBT Sorted_List "~~/src/HOL/Imperative_HOL/Imperative_HOL" +imports RBT_Impl Sorted_List "~~/src/HOL/Imperative_HOL/Imperative_HOL" begin section{* General settings and functions for our representation of clauses *} @@ -635,24 +635,24 @@ section {* Functional version with RedBlackTrees *} -fun tres_thm :: "(ClauseId, Clause) rbt \ Lit \ ClauseId \ Clause \ Clause Heap" +fun tres_thm :: "(ClauseId, Clause) RBT_Impl.rbt \ Lit \ ClauseId \ Clause \ Clause Heap" where "tres_thm t (l, j) cli = - (case (RBT.lookup t j) of + (case (RBT_Impl.lookup t j) of None \ raise (''MiniSatChecked.res_thm: No resolvant clause in thms array for Conflict step.'') | Some clj \ res_thm' l cli clj)" -fun tdoProofStep :: " ProofStep \ ((ClauseId, Clause) rbt * Clause list) \ ((ClauseId, Clause) rbt * Clause list) Heap" +fun tdoProofStep :: " ProofStep \ ((ClauseId, Clause) RBT_Impl.rbt * Clause list) \ ((ClauseId, Clause) RBT_Impl.rbt * Clause list) Heap" where "tdoProofStep (Conflict saveTo (i, rs)) (t, rcl) = - (case (RBT.lookup t i) of + (case (RBT_Impl.lookup t i) of None \ raise (''MiniSatChecked.doProofStep: No starting clause in thms array for Conflict step.'') | Some cli \ (do result \ foldM (tres_thm t) rs cli; - return ((RBT.insert saveTo result t), rcl) + return ((RBT_Impl.insert saveTo result t), rcl) done))" -| "tdoProofStep (Delete cid) (t, rcl) = return ((RBT.delete cid t), rcl)" -| "tdoProofStep (Root cid clause) (t, rcl) = return (RBT.insert cid (sort clause) t, (remdups(sort clause)) # rcl)" +| "tdoProofStep (Delete cid) (t, rcl) = return ((RBT_Impl.delete cid t), rcl)" +| "tdoProofStep (Root cid clause) (t, rcl) = return (RBT_Impl.insert cid (sort clause) t, (remdups(sort clause)) # rcl)" | "tdoProofStep (Xstep cid1 cid2) (t, rcl) = raise ''MiniSatChecked.doProofStep: Xstep constructor found.''" | "tdoProofStep (ProofDone b) (t, rcl) = raise ''MiniSatChecked.doProofStep: ProofDone constructor found.''" @@ -660,8 +660,8 @@ where "tchecker n p i = (do - rcs \ foldM (tdoProofStep) p (RBT.Empty, []); - (if (RBT.lookup (fst rcs) i) = Some [] then return (snd rcs) + rcs \ foldM (tdoProofStep) p (RBT_Impl.Empty, []); + (if (RBT_Impl.lookup (fst rcs) i) = Some [] then return (snd rcs) else raise(''No empty clause'')) done)" diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Wed Apr 14 22:18:10 2010 +0200 +++ b/src/HOL/IsaMakefile Thu Apr 15 12:27:14 2010 +0200 @@ -1,3 +1,4 @@ + # # IsaMakefile for HOL # @@ -406,14 +407,15 @@ Library/Library/ROOT.ML Library/Library/document/root.tex \ Library/Library/document/root.bib \ Library/Transitive_Closure_Table.thy Library/While_Combinator.thy \ - Library/Product_ord.thy Library/Char_nat.thy Library/Table.thy \ + Library/Product_ord.thy Library/Char_nat.thy \ Library/Sublist_Order.thy Library/List_lexord.thy \ Library/AssocList.thy Library/Formal_Power_Series.thy \ Library/Binomial.thy Library/Eval_Witness.thy Library/Code_Char.thy \ Library/Code_Char_chr.thy Library/Code_Integer.thy \ Library/Mapping.thy Library/Numeral_Type.thy Library/Reflection.thy \ Library/Boolean_Algebra.thy Library/Countable.thy \ - Library/Diagonalize.thy Library/RBT.thy Library/Univ_Poly.thy \ + Library/Diagonalize.thy Library/RBT.thy Library/RBT_Impl.thy \ + Library/Univ_Poly.thy \ Library/Poly_Deriv.thy Library/Polynomial.thy Library/Preorder.thy \ Library/Product_plus.thy Library/Product_Vector.thy \ Library/Enum.thy Library/Float.thy Library/Quotient_List.thy \ diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Wed Apr 14 22:18:10 2010 +0200 +++ b/src/HOL/Library/Library.thy Thu Apr 15 12:27:14 2010 +0200 @@ -57,7 +57,6 @@ SML_Quickcheck State_Monad Sum_Of_Squares - Table Transitive_Closure_Table Univ_Poly While_Combinator diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/Library/RBT.thy --- a/src/HOL/Library/RBT.thy Wed Apr 14 22:18:10 2010 +0200 +++ b/src/HOL/Library/RBT.thy Thu Apr 15 12:27:14 2010 +0200 @@ -1,1100 +1,253 @@ -(* Title: RBT.thy - Author: Markus Reiter, TU Muenchen - Author: Alexander Krauss, TU Muenchen -*) +(* Author: Florian Haftmann, TU Muenchen *) -header {* Red-Black Trees *} +header {* Abstract type of Red-Black Trees *} (*<*) theory RBT -imports Main +imports Main RBT_Impl Mapping begin -subsection {* Datatype of RB trees *} - -datatype color = R | B -datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt" - -lemma rbt_cases: - obtains (Empty) "t = Empty" - | (Red) l k v r where "t = Branch R l k v r" - | (Black) l k v r where "t = Branch B l k v r" -proof (cases t) - case Empty with that show thesis by blast -next - case (Branch c) with that show thesis by (cases c) blast+ -qed - -subsection {* Tree properties *} - -subsubsection {* Content of a tree *} - -primrec entries :: "('a, 'b) rbt \ ('a \ 'b) list" -where - "entries Empty = []" -| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r" - -abbreviation (input) entry_in_tree :: "'a \ 'b \ ('a, 'b) rbt \ bool" -where - "entry_in_tree k v t \ (k, v) \ set (entries t)" - -definition keys :: "('a, 'b) rbt \ 'a list" where - "keys t = map fst (entries t)" - -lemma keys_simps [simp, code]: - "keys Empty = []" - "keys (Branch c l k v r) = keys l @ k # keys r" - by (simp_all add: keys_def) - -lemma entry_in_tree_keys: - assumes "(k, v) \ set (entries t)" - shows "k \ set (keys t)" -proof - - from assms have "fst (k, v) \ fst ` set (entries t)" by (rule imageI) - then show ?thesis by (simp add: keys_def) -qed - -lemma keys_entries: - "k \ set (keys t) \ (\v. (k, v) \ set (entries t))" - by (auto intro: entry_in_tree_keys) (auto simp add: keys_def) - - -subsubsection {* Search tree properties *} - -definition tree_less :: "'a\order \ ('a, 'b) rbt \ bool" -where - tree_less_prop: "tree_less k t \ (\x\set (keys t). x < k)" - -abbreviation tree_less_symbol (infix "|\" 50) -where "t |\ x \ tree_less x t" - -definition tree_greater :: "'a\order \ ('a, 'b) rbt \ bool" (infix "\|" 50) -where - tree_greater_prop: "tree_greater k t = (\x\set (keys t). k < x)" - -lemma tree_less_simps [simp]: - "tree_less k Empty = True" - "tree_less k (Branch c lt kt v rt) \ kt < k \ tree_less k lt \ tree_less k rt" - by (auto simp add: tree_less_prop) - -lemma tree_greater_simps [simp]: - "tree_greater k Empty = True" - "tree_greater k (Branch c lt kt v rt) \ k < kt \ tree_greater k lt \ tree_greater k rt" - by (auto simp add: tree_greater_prop) - -lemmas tree_ord_props = tree_less_prop tree_greater_prop - -lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys -lemmas tree_less_nit = tree_less_prop entry_in_tree_keys - -lemma tree_less_eq_trans: "l |\ u \ u \ v \ l |\ v" - and tree_less_trans: "t |\ x \ x < y \ t |\ y" - and tree_greater_eq_trans: "u \ v \ v \| r \ u \| r" - and tree_greater_trans: "x < y \ y \| t \ x \| t" - by (auto simp: tree_ord_props) - -primrec sorted :: "('a::linorder, 'b) rbt \ bool" -where - "sorted Empty = True" -| "sorted (Branch c l k v r) = (l |\ k \ k \| r \ sorted l \ sorted r)" - -lemma sorted_entries: - "sorted t \ List.sorted (List.map fst (entries t))" -by (induct t) - (force simp: sorted_append sorted_Cons tree_ord_props - dest!: entry_in_tree_keys)+ - -lemma distinct_entries: - "sorted t \ distinct (List.map fst (entries t))" -by (induct t) - (force simp: sorted_append sorted_Cons tree_ord_props - dest!: entry_in_tree_keys)+ - - -subsubsection {* Tree lookup *} - -primrec lookup :: "('a\linorder, 'b) rbt \ 'a \ 'b" -where - "lookup Empty k = None" -| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)" - -lemma lookup_keys: "sorted t \ dom (lookup t) = set (keys t)" - by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop) +subsection {* Type definition *} -lemma dom_lookup_Branch: - "sorted (Branch c t1 k v t2) \ - dom (lookup (Branch c t1 k v t2)) - = Set.insert k (dom (lookup t1) \ dom (lookup t2))" +typedef (open) ('a, 'b) rbt = "{t :: ('a\linorder, 'b) RBT_Impl.rbt. is_rbt t}" + morphisms impl_of RBT proof - - assume "sorted (Branch c t1 k v t2)" - moreover from this have "sorted t1" "sorted t2" by simp_all - ultimately show ?thesis by (simp add: lookup_keys) -qed - -lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))" -proof (induct t) - case Empty then show ?case by simp -next - case (Branch color t1 a b t2) - let ?A = "Set.insert a (dom (lookup t1) \ dom (lookup t2))" - have "dom (lookup (Branch color t1 a b t2)) \ ?A" by (auto split: split_if_asm) - moreover from Branch have "finite (insert a (dom (lookup t1) \ dom (lookup t2)))" by simp - ultimately show ?case by (rule finite_subset) -qed - -lemma lookup_tree_less[simp]: "t |\ k \ lookup t k = None" -by (induct t) auto - -lemma lookup_tree_greater[simp]: "k \| t \ lookup t k = None" -by (induct t) auto - -lemma lookup_Empty: "lookup Empty = empty" -by (rule ext) simp - -lemma map_of_entries: - "sorted t \ map_of (entries t) = lookup t" -proof (induct t) - case Empty thus ?case by (simp add: lookup_Empty) -next - case (Branch c t1 k v t2) - have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\v] ++ lookup t1" - proof (rule ext) - fix x - from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp - let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \ v] ++ lookup t1) x" - - have DOM_T1: "!!k'. k'\dom (lookup t1) \ k>k'" - proof - - fix k' - from SORTED have "t1 |\ k" by simp - with tree_less_prop have "\k'\set (keys t1). k>k'" by auto - moreover assume "k'\dom (lookup t1)" - ultimately show "k>k'" using lookup_keys SORTED by auto - qed - - have DOM_T2: "!!k'. k'\dom (lookup t2) \ k| t2" by simp - with tree_greater_prop have "\k'\set (keys t2). kdom (lookup t2)" - ultimately show "kdom [k\v]" by simp - moreover have "x\dom (lookup t2)" proof - assume "x\dom (lookup t2)" - with DOM_T2 have "k v] x" by simp - moreover have "x\dom (lookup t1)" proof - assume "x\dom (lookup t1)" - with DOM_T1 have "k>x" by blast - thus False by simp - qed - ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) - } moreover { - assume C: "x>k" - hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x]) - moreover from C have "x\dom [k\v]" by simp - moreover have "x\dom (lookup t1)" proof - assume "x\dom (lookup t1)" - with DOM_T1 have "k>x" by simp - with C show False by simp - qed - ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) - } ultimately show ?thesis using less_linear by blast - qed - also from Branch have "lookup t2 ++ [k \ v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp - finally show ?case by simp -qed - -lemma lookup_in_tree: "sorted t \ lookup t k = Some v \ (k, v) \ set (entries t)" - by (simp add: map_of_entries [symmetric] distinct_entries) - -lemma set_entries_inject: - assumes sorted: "sorted t1" "sorted t2" - shows "set (entries t1) = set (entries t2) \ entries t1 = entries t2" -proof - - from sorted have "distinct (map fst (entries t1))" - "distinct (map fst (entries t2))" - by (auto intro: distinct_entries) - with sorted show ?thesis - by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map) -qed - -lemma entries_eqI: - assumes sorted: "sorted t1" "sorted t2" - assumes lookup: "lookup t1 = lookup t2" - shows "entries t1 = entries t2" -proof - - from sorted lookup have "map_of (entries t1) = map_of (entries t2)" - by (simp add: map_of_entries) - with sorted have "set (entries t1) = set (entries t2)" - by (simp add: map_of_inject_set distinct_entries) - with sorted show ?thesis by (simp add: set_entries_inject) + have "RBT_Impl.Empty \ ?rbt" by simp + then show ?thesis .. qed -lemma entries_lookup: - assumes "sorted t1" "sorted t2" - shows "entries t1 = entries t2 \ lookup t1 = lookup t2" - using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric]) - -lemma lookup_from_in_tree: - assumes "sorted t1" "sorted t2" - and "\v. (k\'a\linorder, v) \ set (entries t1) \ (k, v) \ set (entries t2)" - shows "lookup t1 k = lookup t2 k" -proof - - from assms have "k \ dom (lookup t1) \ k \ dom (lookup t2)" - by (simp add: keys_entries lookup_keys) - with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric]) -qed - - -subsubsection {* Red-black properties *} - -primrec color_of :: "('a, 'b) rbt \ color" -where - "color_of Empty = B" -| "color_of (Branch c _ _ _ _) = c" +lemma is_rbt_impl_of [simp, intro]: + "is_rbt (impl_of t)" + using impl_of [of t] by simp -primrec bheight :: "('a,'b) rbt \ nat" -where - "bheight Empty = 0" -| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)" - -primrec inv1 :: "('a, 'b) rbt \ bool" -where - "inv1 Empty = True" -| "inv1 (Branch c lt k v rt) \ inv1 lt \ inv1 rt \ (c = B \ color_of lt = B \ color_of rt = B)" +lemma rbt_eq: + "t1 = t2 \ impl_of t1 = impl_of t2" + by (simp add: impl_of_inject) -primrec inv1l :: "('a, 'b) rbt \ bool" -- {* Weaker version *} -where - "inv1l Empty = True" -| "inv1l (Branch c l k v r) = (inv1 l \ inv1 r)" -lemma [simp]: "inv1 t \ inv1l t" by (cases t) simp+ - -primrec inv2 :: "('a, 'b) rbt \ bool" -where - "inv2 Empty = True" -| "inv2 (Branch c lt k v rt) = (inv2 lt \ inv2 rt \ bheight lt = bheight rt)" - -definition is_rbt :: "('a\linorder, 'b) rbt \ bool" where - "is_rbt t \ inv1 t \ inv2 t \ color_of t = B \ sorted t" - -lemma is_rbt_sorted [simp]: - "is_rbt t \ sorted t" by (simp add: is_rbt_def) - -theorem Empty_is_rbt [simp]: - "is_rbt Empty" by (simp add: is_rbt_def) +lemma [code abstype]: + "RBT (impl_of t) = t" + by (simp add: impl_of_inverse) -subsection {* Insertion *} - -fun (* slow, due to massive case splitting *) - balance :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" -where - "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | - "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | - "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | - "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | - "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | - "balance a s t b = Branch B a s t b" - -lemma balance_inv1: "\inv1l l; inv1l r\ \ inv1 (balance l k v r)" - by (induct l k v r rule: balance.induct) auto - -lemma balance_bheight: "bheight l = bheight r \ bheight (balance l k v r) = Suc (bheight l)" - by (induct l k v r rule: balance.induct) auto - -lemma balance_inv2: - assumes "inv2 l" "inv2 r" "bheight l = bheight r" - shows "inv2 (balance l k v r)" - using assms - by (induct l k v r rule: balance.induct) auto - -lemma balance_tree_greater[simp]: "(v \| balance a k x b) = (v \| a \ v \| b \ v < k)" - by (induct a k x b rule: balance.induct) auto - -lemma balance_tree_less[simp]: "(balance a k x b |\ v) = (a |\ v \ b |\ v \ k < v)" - by (induct a k x b rule: balance.induct) auto +subsection {* Primitive operations *} -lemma balance_sorted: - fixes k :: "'a::linorder" - assumes "sorted l" "sorted r" "l |\ k" "k \| r" - shows "sorted (balance l k v r)" -using assms proof (induct l k v r rule: balance.induct) - case ("2_2" a x w b y t c z s va vb vd vc) - hence "y < z \ z \| Branch B va vb vd vc" - by (auto simp add: tree_ord_props) - hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) - with "2_2" show ?case by simp -next - case ("3_2" va vb vd vc x w b y s c z) - from "3_2" have "x < y \ tree_less x (Branch B va vb vd vc)" - by simp - hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) - with "3_2" show ?case by simp -next - case ("3_3" x w b y s c z t va vb vd vc) - from "3_3" have "y < z \ tree_greater z (Branch B va vb vd vc)" by simp - hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) - with "3_3" show ?case by simp -next - case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc) - hence "x < y \ tree_less x (Branch B vd ve vg vf)" by simp - hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans) - from "3_4" have "y < z \ tree_greater z (Branch B va vb vii vc)" by simp - hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans) - with 1 "3_4" show ?case by simp -next - case ("4_2" va vb vd vc x w b y s c z t dd) - hence "x < y \ tree_less x (Branch B va vb vd vc)" by simp - hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) - with "4_2" show ?case by simp -next - case ("5_2" x w b y s c z t va vb vd vc) - hence "y < z \ tree_greater z (Branch B va vb vd vc)" by simp - hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) - with "5_2" show ?case by simp -next - case ("5_3" va vb vd vc x w b y s c z t) - hence "x < y \ tree_less x (Branch B va vb vd vc)" by simp - hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) - with "5_3" show ?case by simp -next - case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf) - hence "x < y \ tree_less x (Branch B va vb vg vc)" by simp - hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans) - from "5_4" have "y < z \ tree_greater z (Branch B vd ve vii vf)" by simp - hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans) - with 1 "5_4" show ?case by simp -qed simp+ - -lemma entries_balance [simp]: - "entries (balance l k v r) = entries l @ (k, v) # entries r" - by (induct l k v r rule: balance.induct) auto - -lemma keys_balance [simp]: - "keys (balance l k v r) = keys l @ k # keys r" - by (simp add: keys_def) +definition lookup :: "('a\linorder, 'b) rbt \ 'a \ 'b" where + [code]: "lookup t = RBT_Impl.lookup (impl_of t)" -lemma balance_in_tree: - "entry_in_tree k x (balance l v y r) \ entry_in_tree k x l \ k = v \ x = y \ entry_in_tree k x r" - by (auto simp add: keys_def) - -lemma lookup_balance[simp]: -fixes k :: "'a::linorder" -assumes "sorted l" "sorted r" "l |\ k" "k \| r" -shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x" -by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted) - -primrec paint :: "color \ ('a,'b) rbt \ ('a,'b) rbt" -where - "paint c Empty = Empty" -| "paint c (Branch _ l k v r) = Branch c l k v r" - -lemma paint_inv1l[simp]: "inv1l t \ inv1l (paint c t)" by (cases t) auto -lemma paint_inv1[simp]: "inv1l t \ inv1 (paint B t)" by (cases t) auto -lemma paint_inv2[simp]: "inv2 t \ inv2 (paint c t)" by (cases t) auto -lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto -lemma paint_sorted[simp]: "sorted t \ sorted (paint c t)" by (cases t) auto -lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto -lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto) -lemma paint_tree_greater[simp]: "(v \| paint c t) = (v \| t)" by (cases t) auto -lemma paint_tree_less[simp]: "(paint c t |\ v) = (t |\ v)" by (cases t) auto - -fun - ins :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" -where - "ins f k v Empty = Branch R Empty k v Empty" | - "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r - else if k > x then balance l x y (ins f k v r) - else Branch B l x (f k y v) r)" | - "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r - else if k > x then Branch R l x y (ins f k v r) - else Branch R l x (f k y v) r)" - -lemma ins_inv1_inv2: - assumes "inv1 t" "inv2 t" - shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" - "color_of t = B \ inv1 (ins f k x t)" "inv1l (ins f k x t)" - using assms - by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight) +definition empty :: "('a\linorder, 'b) rbt" where + "empty = RBT RBT_Impl.Empty" -lemma ins_tree_greater[simp]: "(v \| ins f k x t) = (v \| t \ k > v)" - by (induct f k x t rule: ins.induct) auto -lemma ins_tree_less[simp]: "(ins f k x t |\ v) = (t |\ v \ k < v)" - by (induct f k x t rule: ins.induct) auto -lemma ins_sorted[simp]: "sorted t \ sorted (ins f k x t)" - by (induct f k x t rule: ins.induct) (auto simp: balance_sorted) - -lemma keys_ins: "set (keys (ins f k v t)) = { k } \ set (keys t)" - by (induct f k v t rule: ins.induct) auto - -lemma lookup_ins: - fixes k :: "'a::linorder" - assumes "sorted t" - shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \ v - | Some w \ f k w v)) x" -using assms by (induct f k v t rule: ins.induct) auto - -definition - insert_with_key :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" -where - "insert_with_key f k v t = paint B (ins f k v t)" - -lemma insertwk_sorted: "sorted t \ sorted (insert_with_key f k x t)" - by (auto simp: insert_with_key_def) - -theorem insertwk_is_rbt: - assumes inv: "is_rbt t" - shows "is_rbt (insert_with_key f k x t)" -using assms -unfolding insert_with_key_def is_rbt_def -by (auto simp: ins_inv1_inv2) - -lemma lookup_insertwk: - assumes "sorted t" - shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \ v - | Some w \ f k w v)) x" -unfolding insert_with_key_def using assms -by (simp add:lookup_ins) - -definition - insertw_def: "insert_with f = insert_with_key (\_. f)" - -lemma insertw_sorted: "sorted t \ sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def) -theorem insertw_is_rbt: "is_rbt t \ is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def) - -lemma lookup_insertw: - assumes "is_rbt t" - shows "lookup (insert_with f k v t) = (lookup t)(k \ (if k:dom (lookup t) then f (the (lookup t k)) v else v))" -using assms -unfolding insertw_def -by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def) +lemma impl_of_empty [code abstract]: + "impl_of empty = RBT_Impl.Empty" + by (simp add: empty_def RBT_inverse) definition insert :: "'a\linorder \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where - "insert = insert_with_key (\_ _ nv. nv)" + "insert k v t = RBT (RBT_Impl.insert k v (impl_of t))" + +lemma impl_of_insert [code abstract]: + "impl_of (insert k v t) = RBT_Impl.insert k v (impl_of t)" + by (simp add: insert_def RBT_inverse) + +definition delete :: "'a\linorder \ ('a, 'b) rbt \ ('a, 'b) rbt" where + "delete k t = RBT (RBT_Impl.delete k (impl_of t))" -lemma insert_sorted: "sorted t \ sorted (insert k v t)" by (simp add: insertwk_sorted insert_def) -theorem insert_is_rbt [simp]: "is_rbt t \ is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def) +lemma impl_of_delete [code abstract]: + "impl_of (delete k t) = RBT_Impl.delete k (impl_of t)" + by (simp add: delete_def RBT_inverse) + +definition entries :: "('a\linorder, 'b) rbt \ ('a \ 'b) list" where + [code]: "entries t = RBT_Impl.entries (impl_of t)" + +definition keys :: "('a\linorder, 'b) rbt \ 'a list" where + [code]: "keys t = RBT_Impl.keys (impl_of t)" + +definition bulkload :: "('a\linorder \ 'b) list \ ('a, 'b) rbt" where + "bulkload xs = RBT (RBT_Impl.bulkload xs)" -lemma lookup_insert: - assumes "is_rbt t" - shows "lookup (insert k v t) = (lookup t)(k\v)" -unfolding insert_def -using assms -by (rule_tac ext) (simp add: lookup_insertwk split:option.split) +lemma impl_of_bulkload [code abstract]: + "impl_of (bulkload xs) = RBT_Impl.bulkload xs" + by (simp add: bulkload_def RBT_inverse) + +definition map_entry :: "'a \ ('b \ 'b) \ ('a\linorder, 'b) rbt \ ('a, 'b) rbt" where + "map_entry k f t = RBT (RBT_Impl.map_entry k f (impl_of t))" + +lemma impl_of_map_entry [code abstract]: + "impl_of (map_entry k f t) = RBT_Impl.map_entry k f (impl_of t)" + by (simp add: map_entry_def RBT_inverse) + +definition map :: "('a \ 'b \ 'b) \ ('a\linorder, 'b) rbt \ ('a, 'b) rbt" where + "map f t = RBT (RBT_Impl.map f (impl_of t))" + +lemma impl_of_map [code abstract]: + "impl_of (map f t) = RBT_Impl.map f (impl_of t)" + by (simp add: map_def RBT_inverse) + +definition fold :: "('a \ 'b \ 'c \ 'c) \ ('a\linorder, 'b) rbt \ 'c \ 'c" where + [code]: "fold f t = RBT_Impl.fold f (impl_of t)" + + +subsection {* Derived operations *} + +definition is_empty :: "('a\linorder, 'b) rbt \ bool" where + [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \ True | _ \ False)" -subsection {* Deletion *} - -lemma bheight_paintR'[simp]: "color_of t = B \ bheight (paint R t) = bheight t - 1" -by (cases t rule: rbt_cases) auto - -fun - balance_left :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" -where - "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" | - "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" | - "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" | - "balance_left t k x s = Empty" +subsection {* Abstract lookup properties *} -lemma balance_left_inv2_with_inv1: - assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt" - shows "bheight (balance_left lt k v rt) = bheight lt + 1" - and "inv2 (balance_left lt k v rt)" -using assms -by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight) - -lemma balance_left_inv2_app: - assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B" - shows "inv2 (balance_left lt k v rt)" - "bheight (balance_left lt k v rt) = bheight rt" -using assms -by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ - -lemma balance_left_inv1: "\inv1l a; inv1 b; color_of b = B\ \ inv1 (balance_left a k x b)" - by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+ - -lemma balance_left_inv1l: "\ inv1l lt; inv1 rt \ \ inv1l (balance_left lt k x rt)" -by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1) +lemma lookup_RBT: + "is_rbt t \ lookup (RBT t) = RBT_Impl.lookup t" + by (simp add: lookup_def RBT_inverse) -lemma balance_left_sorted: "\ sorted l; sorted r; tree_less k l; tree_greater k r \ \ sorted (balance_left l k v r)" -apply (induct l k v r rule: balance_left.induct) -apply (auto simp: balance_sorted) -apply (unfold tree_greater_prop tree_less_prop) -by force+ - -lemma balance_left_tree_greater: - fixes k :: "'a::order" - assumes "k \| a" "k \| b" "k < x" - shows "k \| balance_left a x t b" -using assms -by (induct a x t b rule: balance_left.induct) auto - -lemma balance_left_tree_less: - fixes k :: "'a::order" - assumes "a |\ k" "b |\ k" "x < k" - shows "balance_left a x t b |\ k" -using assms -by (induct a x t b rule: balance_left.induct) auto +lemma lookup_impl_of: + "RBT_Impl.lookup (impl_of t) = lookup t" + by (simp add: lookup_def) -lemma balance_left_in_tree: - assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r" - shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \ k = a \ v = b \ entry_in_tree k v r)" -using assms -by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree) - -fun - balance_right :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" -where - "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" | - "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" | - "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" | - "balance_right t k x s = Empty" - -lemma balance_right_inv2_with_inv1: - assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt" - shows "inv2 (balance_right lt k v rt) \ bheight (balance_right lt k v rt) = bheight lt" -using assms -by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight) +lemma entries_impl_of: + "RBT_Impl.entries (impl_of t) = entries t" + by (simp add: entries_def) -lemma balance_right_inv1: "\inv1 a; inv1l b; color_of a = B\ \ inv1 (balance_right a k x b)" -by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+ - -lemma balance_right_inv1l: "\ inv1 lt; inv1l rt \ \inv1l (balance_right lt k x rt)" -by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1) - -lemma balance_right_sorted: "\ sorted l; sorted r; tree_less k l; tree_greater k r \ \ sorted (balance_right l k v r)" -apply (induct l k v r rule: balance_right.induct) -apply (auto simp:balance_sorted) -apply (unfold tree_less_prop tree_greater_prop) -by force+ +lemma keys_impl_of: + "RBT_Impl.keys (impl_of t) = keys t" + by (simp add: keys_def) -lemma balance_right_tree_greater: - fixes k :: "'a::order" - assumes "k \| a" "k \| b" "k < x" - shows "k \| balance_right a x t b" -using assms by (induct a x t b rule: balance_right.induct) auto - -lemma balance_right_tree_less: - fixes k :: "'a::order" - assumes "a |\ k" "b |\ k" "x < k" - shows "balance_right a x t b |\ k" -using assms by (induct a x t b rule: balance_right.induct) auto - -lemma balance_right_in_tree: - assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r" - shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \ x = k \ y = v \ entry_in_tree x y r)" -using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree) +lemma lookup_empty [simp]: + "lookup empty = Map.empty" + by (simp add: empty_def lookup_RBT expand_fun_eq) -fun - combine :: "('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" -where - "combine Empty x = x" -| "combine x Empty = x" -| "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of - Branch R b2 t z c2 \ (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) | - bc \ Branch R a k x (Branch R bc s y d))" -| "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of - Branch R b2 t z c2 \ Branch R (Branch B a k x b2) t z (Branch B c2 s y d) | - bc \ balance_left a k x (Branch B bc s y d))" -| "combine a (Branch R b k x c) = Branch R (combine a b) k x c" -| "combine (Branch R a k x b) c = Branch R a k x (combine b c)" - -lemma combine_inv2: - assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt" - shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)" -using assms -by (induct lt rt rule: combine.induct) - (auto simp: balance_left_inv2_app split: rbt.splits color.splits) +lemma lookup_insert [simp]: + "lookup (insert k v t) = (lookup t)(k \ v)" + by (simp add: insert_def lookup_RBT lookup_insert lookup_impl_of) -lemma combine_inv1: - assumes "inv1 lt" "inv1 rt" - shows "color_of lt = B \ color_of rt = B \ inv1 (combine lt rt)" - "inv1l (combine lt rt)" -using assms -by (induct lt rt rule: combine.induct) - (auto simp: balance_left_inv1 split: rbt.splits color.splits) +lemma lookup_delete [simp]: + "lookup (delete k t) = (lookup t)(k := None)" + by (simp add: delete_def lookup_RBT RBT_Impl.lookup_delete lookup_impl_of restrict_complement_singleton_eq) -lemma combine_tree_greater[simp]: - fixes k :: "'a::linorder" - assumes "k \| l" "k \| r" - shows "k \| combine l r" -using assms -by (induct l r rule: combine.induct) - (auto simp: balance_left_tree_greater split:rbt.splits color.splits) - -lemma combine_tree_less[simp]: - fixes k :: "'a::linorder" - assumes "l |\ k" "r |\ k" - shows "combine l r |\ k" -using assms -by (induct l r rule: combine.induct) - (auto simp: balance_left_tree_less split:rbt.splits color.splits) +lemma map_of_entries [simp]: + "map_of (entries t) = lookup t" + by (simp add: entries_def map_of_entries lookup_impl_of) -lemma combine_sorted: - fixes k :: "'a::linorder" - assumes "sorted l" "sorted r" "l |\ k" "k \| r" - shows "sorted (combine l r)" -using assms proof (induct l r rule: combine.induct) - case (3 a x v b c y w d) - hence ineqs: "a |\ x" "x \| b" "b |\ k" "k \| c" "c |\ y" "y \| d" - by auto - with 3 - show ?case - by (cases "combine b c" rule: rbt_cases) - (auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+) -next - case (4 a x v b c y w d) - hence "x < k \ tree_greater k c" by simp - hence "tree_greater x c" by (blast dest: tree_greater_trans) - with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater) - from 4 have "k < y \ tree_less k b" by simp - hence "tree_less y b" by (blast dest: tree_less_trans) - with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less) - show ?case - proof (cases "combine b c" rule: rbt_cases) - case Empty - from 4 have "x < y \ tree_greater y d" by auto - hence "tree_greater x d" by (blast dest: tree_greater_trans) - with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto - with Empty show ?thesis by (simp add: balance_left_sorted) - next - case (Red lta va ka rta) - with 2 4 have "x < va \ tree_less x a" by simp - hence 5: "tree_less va a" by (blast dest: tree_less_trans) - from Red 3 4 have "va < y \ tree_greater y d" by simp - hence "tree_greater va d" by (blast dest: tree_greater_trans) - with Red 2 3 4 5 show ?thesis by simp - next - case (Black lta va ka rta) - from 4 have "x < y \ tree_greater y d" by auto - hence "tree_greater x d" by (blast dest: tree_greater_trans) - with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto - with Black show ?thesis by (simp add: balance_left_sorted) - qed -next - case (5 va vb vd vc b x w c) - hence "k < x \ tree_less k (Branch B va vb vd vc)" by simp - hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans) - with 5 show ?case by (simp add: combine_tree_less) -next - case (6 a x v b va vb vd vc) - hence "x < k \ tree_greater k (Branch B va vb vd vc)" by simp - hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) - with 6 show ?case by (simp add: combine_tree_greater) -qed simp+ +lemma entries_lookup: + "entries t1 = entries t2 \ lookup t1 = lookup t2" + by (simp add: entries_def lookup_def entries_lookup) + +lemma lookup_bulkload [simp]: + "lookup (bulkload xs) = map_of xs" + by (simp add: bulkload_def lookup_RBT RBT_Impl.lookup_bulkload) -lemma combine_in_tree: - assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r" - shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \ entry_in_tree k v r)" -using assms -proof (induct l r rule: combine.induct) - case (4 _ _ _ b c) - hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2) - from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1) +lemma lookup_map_entry [simp]: + "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" + by (simp add: map_entry_def lookup_RBT lookup_map_entry lookup_impl_of) - show ?case - proof (cases "combine b c" rule: rbt_cases) - case Empty - with 4 a show ?thesis by (auto simp: balance_left_in_tree) - next - case (Red lta ka va rta) - with 4 show ?thesis by auto - next - case (Black lta ka va rta) - with a b 4 show ?thesis by (auto simp: balance_left_in_tree) - qed -qed (auto split: rbt.splits color.splits) +lemma lookup_map [simp]: + "lookup (map f t) k = Option.map (f k) (lookup t k)" + by (simp add: map_def lookup_RBT lookup_map lookup_impl_of) -fun - del_from_left :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and - del_from_right :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and - del :: "('a\linorder) \ ('a,'b) rbt \ ('a,'b) rbt" -where - "del x Empty = Empty" | - "del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" | - "del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" | - "del_from_left x a y s b = Branch R (del x a) y s b" | - "del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" | - "del_from_right x a y s b = Branch R a y s (del x b)" +lemma fold_fold: + "fold f t = (\s. foldl (\s (k, v). f k v s) s (entries t))" + by (simp add: fold_def expand_fun_eq RBT_Impl.fold_def entries_impl_of) -lemma - assumes "inv2 lt" "inv1 lt" - shows - "\inv2 rt; bheight lt = bheight rt; inv1 rt\ \ - inv2 (del_from_left x lt k v rt) \ bheight (del_from_left x lt k v rt) = bheight lt \ (color_of lt = B \ color_of rt = B \ inv1 (del_from_left x lt k v rt) \ (color_of lt \ B \ color_of rt \ B) \ inv1l (del_from_left x lt k v rt))" - and "\inv2 rt; bheight lt = bheight rt; inv1 rt\ \ - inv2 (del_from_right x lt k v rt) \ bheight (del_from_right x lt k v rt) = bheight lt \ (color_of lt = B \ color_of rt = B \ inv1 (del_from_right x lt k v rt) \ (color_of lt \ B \ color_of rt \ B) \ inv1l (del_from_right x lt k v rt))" - and del_inv1_inv2: "inv2 (del x lt) \ (color_of lt = R \ bheight (del x lt) = bheight lt \ inv1 (del x lt) - \ color_of lt = B \ bheight (del x lt) = bheight lt - 1 \ inv1l (del x lt))" -using assms -proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct) -case (2 y c _ y') - have "y = y' \ y < y' \ y > y'" by auto - thus ?case proof (elim disjE) - assume "y = y'" - with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+ - next - assume "y < y'" - with 2 show ?thesis by (cases c) auto - next - assume "y' < y" - with 2 show ?thesis by (cases c) auto - qed -next - case (3 y lt z v rta y' ss bb) - thus ?case by (cases "color_of (Branch B lt z v rta) = B \ color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+ -next - case (5 y a y' ss lt z v rta) - thus ?case by (cases "color_of a = B \ color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+ -next - case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \ color_of Empty = B") simp+ -qed auto +lemma is_empty_empty [simp]: + "is_empty t \ t = empty" + by (simp add: rbt_eq is_empty_def impl_of_empty split: rbt.split) -lemma - del_from_left_tree_less: "\tree_less v lt; tree_less v rt; k < v\ \ tree_less v (del_from_left x lt k y rt)" - and del_from_right_tree_less: "\tree_less v lt; tree_less v rt; k < v\ \ tree_less v (del_from_right x lt k y rt)" - and del_tree_less: "tree_less v lt \ tree_less v (del x lt)" -by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) - (auto simp: balance_left_tree_less balance_right_tree_less) - -lemma del_from_left_tree_greater: "\tree_greater v lt; tree_greater v rt; k > v\ \ tree_greater v (del_from_left x lt k y rt)" - and del_from_right_tree_greater: "\tree_greater v lt; tree_greater v rt; k > v\ \ tree_greater v (del_from_right x lt k y rt)" - and del_tree_greater: "tree_greater v lt \ tree_greater v (del x lt)" -by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) - (auto simp: balance_left_tree_greater balance_right_tree_greater) - -lemma "\sorted lt; sorted rt; tree_less k lt; tree_greater k rt\ \ sorted (del_from_left x lt k y rt)" - and "\sorted lt; sorted rt; tree_less k lt; tree_greater k rt\ \ sorted (del_from_right x lt k y rt)" - and del_sorted: "sorted lt \ sorted (del x lt)" -proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) - case (3 x lta zz v rta yy ss bb) - from 3 have "tree_less yy (Branch B lta zz v rta)" by simp - hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less) - with 3 show ?case by (simp add: balance_left_sorted) -next - case ("4_2" x vaa vbb vdd vc yy ss bb) - hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp - hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less) - with "4_2" show ?case by simp -next - case (5 x aa yy ss lta zz v rta) - hence "tree_greater yy (Branch B lta zz v rta)" by simp - hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater) - with 5 show ?case by (simp add: balance_right_sorted) -next - case ("6_2" x aa yy ss vaa vbb vdd vc) - hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp - hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater) - with "6_2" show ?case by simp -qed (auto simp: combine_sorted) +lemma RBT_lookup_empty [simp]: (*FIXME*) + "RBT_Impl.lookup t = Map.empty \ t = RBT_Impl.Empty" + by (cases t) (auto simp add: expand_fun_eq) -lemma "\sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\ \ entry_in_tree k v (del_from_left x lt kt y rt) = (False \ (x \ k \ entry_in_tree k v (Branch c lt kt y rt)))" - and "\sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\ \ entry_in_tree k v (del_from_right x lt kt y rt) = (False \ (x \ k \ entry_in_tree k v (Branch c lt kt y rt)))" - and del_in_tree: "\sorted t; inv1 t; inv2 t\ \ entry_in_tree k v (del x t) = (False \ (x \ k \ entry_in_tree k v t))" -proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct) - case (2 xx c aa yy ss bb) - have "xx = yy \ xx < yy \ xx > yy" by auto - from this 2 show ?case proof (elim disjE) - assume "xx = yy" - with 2 show ?thesis proof (cases "xx = k") - case True - from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \ k = yy" by simp - hence "\ entry_in_tree k v aa" "\ entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop) - with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree) - qed (simp add: combine_in_tree) - qed simp+ -next - case (3 xx lta zz vv rta yy ss bb) - def mt[simp]: mt == "Branch B lta zz vv rta" - from 3 have "inv2 mt \ inv1 mt" by simp - hence "inv2 (del xx mt) \ (color_of mt = R \ bheight (del xx mt) = bheight mt \ inv1 (del xx mt) \ color_of mt = B \ bheight (del xx mt) = bheight mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) - with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \ xx \ k \ entry_in_tree k v mt \ (k = yy \ v = ss) \ entry_in_tree k v bb)" by (simp add: balance_left_in_tree) - thus ?case proof (cases "xx = k") - case True - from 3 True have "tree_greater yy bb \ yy > k" by simp - hence "tree_greater k bb" by (blast dest: tree_greater_trans) - with 3 4 True show ?thesis by (auto simp: tree_greater_nit) - qed auto -next - case ("4_1" xx yy ss bb) - show ?case proof (cases "xx = k") - case True - with "4_1" have "tree_greater yy bb \ k < yy" by simp - hence "tree_greater k bb" by (blast dest: tree_greater_trans) - with "4_1" `xx = k` - have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit) - thus ?thesis by auto - qed simp+ -next - case ("4_2" xx vaa vbb vdd vc yy ss bb) - thus ?case proof (cases "xx = k") - case True - with "4_2" have "k < yy \ tree_greater yy bb" by simp - hence "tree_greater k bb" by (blast dest: tree_greater_trans) - with True "4_2" show ?thesis by (auto simp: tree_greater_nit) - qed auto -next - case (5 xx aa yy ss lta zz vv rta) - def mt[simp]: mt == "Branch B lta zz vv rta" - from 5 have "inv2 mt \ inv1 mt" by simp - hence "inv2 (del xx mt) \ (color_of mt = R \ bheight (del xx mt) = bheight mt \ inv1 (del xx mt) \ color_of mt = B \ bheight (del xx mt) = bheight mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) - with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \ (k = yy \ v = ss) \ False \ xx \ k \ entry_in_tree k v mt)" by (simp add: balance_right_in_tree) - thus ?case proof (cases "xx = k") - case True - from 5 True have "tree_less yy aa \ yy < k" by simp - hence "tree_less k aa" by (blast dest: tree_less_trans) - with 3 5 True show ?thesis by (auto simp: tree_less_nit) - qed auto -next - case ("6_1" xx aa yy ss) - show ?case proof (cases "xx = k") - case True - with "6_1" have "tree_less yy aa \ k > yy" by simp - hence "tree_less k aa" by (blast dest: tree_less_trans) - with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit) - qed simp -next - case ("6_2" xx aa yy ss vaa vbb vdd vc) - thus ?case proof (cases "xx = k") - case True - with "6_2" have "k > yy \ tree_less yy aa" by simp - hence "tree_less k aa" by (blast dest: tree_less_trans) - with True "6_2" show ?thesis by (auto simp: tree_less_nit) - qed auto -qed simp +lemma lookup_empty_empty [simp]: + "lookup t = Map.empty \ t = empty" + by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse) + +lemma sorted_keys [iff]: + "sorted (keys t)" + by (simp add: keys_def RBT_Impl.keys_def sorted_entries) + +lemma distinct_keys [iff]: + "distinct (keys t)" + by (simp add: keys_def RBT_Impl.keys_def distinct_entries) -definition delete where - delete_def: "delete k t = paint B (del k t)" +subsection {* Implementation of mappings *} -theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)" -proof - - from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto - hence "inv2 (del k t) \ (color_of t = R \ bheight (del k t) = bheight t \ inv1 (del k t) \ color_of t = B \ bheight (del k t) = bheight t - 1 \ inv1l (del k t))" by (rule del_inv1_inv2) - hence "inv2 (del k t) \ inv1l (del k t)" by (cases "color_of t") auto - with assms show ?thesis - unfolding is_rbt_def delete_def - by (auto intro: paint_sorted del_sorted) -qed - -lemma delete_in_tree: - assumes "is_rbt t" - shows "entry_in_tree k v (delete x t) = (x \ k \ entry_in_tree k v t)" - using assms unfolding is_rbt_def delete_def - by (auto simp: del_in_tree) +definition Mapping :: "('a\linorder, 'b) rbt \ ('a, 'b) mapping" where + "Mapping t = Mapping.Mapping (lookup t)" -lemma lookup_delete: - assumes is_rbt: "is_rbt t" - shows "lookup (delete k t) = (lookup t)|`(-{k})" -proof - fix x - show "lookup (delete k t) x = (lookup t |` (-{k})) x" - proof (cases "x = k") - assume "x = k" - with is_rbt show ?thesis - by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree) - next - assume "x \ k" - thus ?thesis - by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree) - qed -qed +code_datatype Mapping - -subsection {* Union *} +lemma lookup_Mapping [simp, code]: + "Mapping.lookup (Mapping t) = lookup t" + by (simp add: Mapping_def) -primrec - union_with_key :: "('a\linorder \ 'b \ 'b \ 'b) \ ('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" -where - "union_with_key f t Empty = t" -| "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt" - -lemma unionwk_sorted: "sorted lt \ sorted (union_with_key f lt rt)" - by (induct rt arbitrary: lt) (auto simp: insertwk_sorted) -theorem unionwk_is_rbt[simp]: "is_rbt lt \ is_rbt (union_with_key f lt rt)" - by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+ +lemma empty_Mapping [code]: + "Mapping.empty = Mapping empty" + by (rule mapping_eqI) simp -definition - union_with where - "union_with f = union_with_key (\_. f)" - -theorem unionw_is_rbt: "is_rbt lt \ is_rbt (union_with f lt rt)" unfolding union_with_def by simp - -definition union where - "union = union_with_key (%_ _ rv. rv)" - -theorem union_is_rbt: "is_rbt lt \ is_rbt (union lt rt)" unfolding union_def by simp +lemma is_empty_Mapping [code]: + "Mapping.is_empty (Mapping t) \ is_empty t" + by (simp add: rbt_eq Mapping.is_empty_empty Mapping_def) -lemma union_Branch[simp]: - "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt" - unfolding union_def insert_def - by simp +lemma insert_Mapping [code]: + "Mapping.update k v (Mapping t) = Mapping (insert k v t)" + by (rule mapping_eqI) simp -lemma lookup_union: - assumes "is_rbt s" "sorted t" - shows "lookup (union s t) = lookup s ++ lookup t" -using assms -proof (induct t arbitrary: s) - case Empty thus ?case by (auto simp: union_def) -next - case (Branch c l k v r s) - then have "sorted r" "sorted l" "l |\ k" "k \| r" by auto - - have meq: "lookup s(k \ v) ++ lookup l ++ lookup r = - lookup s ++ - (\a. if a < k then lookup l a - else if k < a then lookup r a else Some v)" (is "?m1 = ?m2") - proof (rule ext) - fix a +lemma delete_Mapping [code]: + "Mapping.delete k (Mapping xs) = Mapping (delete k xs)" + by (rule mapping_eqI) simp - have "k < a \ k = a \ k > a" by auto - thus "?m1 a = ?m2 a" - proof (elim disjE) - assume "k < a" - with `l |\ k` have "l |\ a" by (rule tree_less_trans) - with `k < a` show ?thesis - by (auto simp: map_add_def split: option.splits) - next - assume "k = a" - with `l |\ k` `k \| r` - show ?thesis by (auto simp: map_add_def) - next - assume "a < k" - from this `k \| r` have "a \| r" by (rule tree_greater_trans) - with `a < k` show ?thesis - by (auto simp: map_add_def split: option.splits) - qed - qed +lemma keys_Mapping [code]: + "Mapping.keys (Mapping t) = set (keys t)" + by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys) - from Branch have is_rbt: "is_rbt (RBT.union (RBT.insert k v s) l)" - by (auto intro: union_is_rbt insert_is_rbt) - with Branch have IHs: - "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r" - "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l" - by auto - - with meq show ?case - by (auto simp: lookup_insert[OF Branch(3)]) +lemma ordered_keys_Mapping [code]: + "Mapping.ordered_keys (Mapping t) = keys t" + by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping) -qed - - -subsection {* Modifying existing entries *} - -primrec - map_entry :: "'a\linorder \ ('b \ 'b) \ ('a, 'b) rbt \ ('a, 'b) rbt" -where - "map_entry k f Empty = Empty" -| "map_entry k f (Branch c lt x v rt) = - (if k < x then Branch c (map_entry k f lt) x v rt - else if k > x then (Branch c lt x v (map_entry k f rt)) - else Branch c lt x (f v) rt)" +lemma Mapping_size_card_keys: (*FIXME*) + "Mapping.size m = card (Mapping.keys m)" + by (simp add: Mapping.size_def Mapping.keys_def) -lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+ -lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+ -lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+ -lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+ -lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+ -lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t" - by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater) - -theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t" -unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 ) - -theorem lookup_map_entry: - "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" - by (induct t) (auto split: option.splits simp add: expand_fun_eq) - +lemma size_Mapping [code]: + "Mapping.size (Mapping t) = length (keys t)" + by (simp add: Mapping_size_card_keys keys_Mapping distinct_card) -subsection {* Mapping all entries *} - -primrec - map :: "('a \ 'b \ 'c) \ ('a, 'b) rbt \ ('a, 'c) rbt" -where - "map f Empty = Empty" -| "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)" +lemma tabulate_Mapping [code]: + "Mapping.tabulate ks f = Mapping (bulkload (List.map (\k. (k, f k)) ks))" + by (rule mapping_eqI) (simp add: map_of_map_restrict) -lemma map_entries [simp]: "entries (map f t) = List.map (\(k, v). (k, f k v)) (entries t)" - by (induct t) auto -lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def) -lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+ -lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+ -lemma map_sorted: "sorted (map f t) = sorted t" by (induct t) (simp add: map_tree_less map_tree_greater)+ -lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+ -lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+ -lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+ -theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" -unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of) - -theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)" - by (induct t) auto - - -subsection {* Folding over entries *} - -definition fold :: "('a \ 'b \ 'c \ 'c) \ ('a, 'b) rbt \ 'c \ 'c" where - "fold f t s = foldl (\s (k, v). f k v s) s (entries t)" +lemma bulkload_Mapping [code]: + "Mapping.bulkload vs = Mapping (bulkload (List.map (\n. (n, vs ! n)) [0.. f k v \ fold f lt" - by (simp_all add: fold_def expand_fun_eq) - - -subsection {* Bulkloading a tree *} - -definition bulkload :: "('a \ 'b) list \ ('a\linorder, 'b) rbt" where - "bulkload xs = foldr (\(k, v). RBT.insert k v) xs RBT.Empty" - -lemma bulkload_is_rbt [simp, intro]: - "is_rbt (bulkload xs)" - unfolding bulkload_def by (induct xs) auto +lemma [code, code del]: "HOL.eq (x :: (_, _) mapping) y \ x = y" by (fact eq_equals) (*FIXME*) -lemma lookup_bulkload: - "RBT.lookup (bulkload xs) = map_of xs" -proof - - obtain ys where "ys = rev xs" by simp - have "\t. is_rbt t \ - RBT.lookup (foldl (\t (k, v). RBT.insert k v t) t ys) = RBT.lookup t ++ map_of (rev ys)" - by (induct ys) (simp_all add: bulkload_def split_def RBT.lookup_insert) - from this Empty_is_rbt have - "RBT.lookup (foldl (\t (k, v). RBT.insert k v t) RBT.Empty (rev xs)) = RBT.lookup RBT.Empty ++ map_of xs" - by (simp add: `ys = rev xs`) - then show ?thesis by (simp add: bulkload_def foldl_foldr lookup_Empty split_def) -qed +lemma eq_Mapping [code]: + "HOL.eq (Mapping t1) (Mapping t2) \ entries t1 = entries t2" + by (simp add: eq Mapping_def entries_lookup) -hide (open) const Empty insert delete entries bulkload lookup map_entry map fold union sorted +hide (open) const impl_of lookup empty insert delete + entries keys bulkload map_entry map fold (*>*) text {* - This theory defines purely functional red-black trees which can be - used as an efficient representation of finite maps. + This theory defines abstract red-black trees as an efficient + representation of finite maps, backed by the implementation + in @{theory RBT_Impl}. *} - subsection {* Data type and invariant *} text {* - The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of - type @{typ "'k"} and values of type @{typ "'v"}. To function - properly, the key type musorted belong to the @{text "linorder"} class. + The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with + keys of type @{typ "'k"} and values of type @{typ "'v"}. To function + properly, the key type musorted belong to the @{text "linorder"} + class. A value @{term t} of this type is a valid red-black tree if it - satisfies the invariant @{text "is_rbt t"}. - This theory provides lemmas to prove that the invariant is - satisfied throughout the computation. + satisfies the invariant @{text "is_rbt t"}. The abstract type @{typ + "('k, 'v) rbt"} always obeys this invariant, and for this reason you + should only use this in our application. Going back to @{typ "('k, + 'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven + properties about the operations must be established. The interpretation function @{const "RBT.lookup"} returns the partial map represented by a red-black tree: @@ -1106,15 +259,12 @@ $O(\log n)$. *} - subsection {* Operations *} -print_antiquotations - text {* Currently, the following operations are supported: - @{term_type [display] "RBT.Empty"} + @{term_type [display] "RBT.empty"} Returns the empty tree. $O(1)$ @{term_type [display] "RBT.insert"} @@ -1137,9 +287,6 @@ @{term_type [display] "RBT.fold"} Folds over all entries in a tree. $O(n)$ - - @{term_type [display] "RBT.union"} - Forms the union of two trees, preferring entries from the first one. *} @@ -1173,8 +320,8 @@ text {* \noindent - \underline{@{text "lookup_Empty"}} - @{thm [display] lookup_Empty} + \underline{@{text "lookup_empty"}} + @{thm [display] lookup_empty} \vspace{1ex} \noindent @@ -1196,11 +343,6 @@ \underline{@{text "lookup_map"}} @{thm [display] lookup_map} \vspace{1ex} - - \noindent - \underline{@{text "lookup_union"}} - @{thm [display] lookup_union} - \vspace{1ex} *} end diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/Library/RBT_Impl.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/RBT_Impl.thy Thu Apr 15 12:27:14 2010 +0200 @@ -0,0 +1,1084 @@ +(* Title: RBT_Impl.thy + Author: Markus Reiter, TU Muenchen + Author: Alexander Krauss, TU Muenchen +*) + +header {* Implementation of Red-Black Trees *} + +theory RBT_Impl +imports Main +begin + +text {* + For applications, you should use theory @{text RBT} which defines + an abstract type of red-black tree obeying the invariant. +*} + +subsection {* Datatype of RB trees *} + +datatype color = R | B +datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt" + +lemma rbt_cases: + obtains (Empty) "t = Empty" + | (Red) l k v r where "t = Branch R l k v r" + | (Black) l k v r where "t = Branch B l k v r" +proof (cases t) + case Empty with that show thesis by blast +next + case (Branch c) with that show thesis by (cases c) blast+ +qed + +subsection {* Tree properties *} + +subsubsection {* Content of a tree *} + +primrec entries :: "('a, 'b) rbt \ ('a \ 'b) list" +where + "entries Empty = []" +| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r" + +abbreviation (input) entry_in_tree :: "'a \ 'b \ ('a, 'b) rbt \ bool" +where + "entry_in_tree k v t \ (k, v) \ set (entries t)" + +definition keys :: "('a, 'b) rbt \ 'a list" where + "keys t = map fst (entries t)" + +lemma keys_simps [simp, code]: + "keys Empty = []" + "keys (Branch c l k v r) = keys l @ k # keys r" + by (simp_all add: keys_def) + +lemma entry_in_tree_keys: + assumes "(k, v) \ set (entries t)" + shows "k \ set (keys t)" +proof - + from assms have "fst (k, v) \ fst ` set (entries t)" by (rule imageI) + then show ?thesis by (simp add: keys_def) +qed + +lemma keys_entries: + "k \ set (keys t) \ (\v. (k, v) \ set (entries t))" + by (auto intro: entry_in_tree_keys) (auto simp add: keys_def) + + +subsubsection {* Search tree properties *} + +definition tree_less :: "'a\order \ ('a, 'b) rbt \ bool" +where + tree_less_prop: "tree_less k t \ (\x\set (keys t). x < k)" + +abbreviation tree_less_symbol (infix "|\" 50) +where "t |\ x \ tree_less x t" + +definition tree_greater :: "'a\order \ ('a, 'b) rbt \ bool" (infix "\|" 50) +where + tree_greater_prop: "tree_greater k t = (\x\set (keys t). k < x)" + +lemma tree_less_simps [simp]: + "tree_less k Empty = True" + "tree_less k (Branch c lt kt v rt) \ kt < k \ tree_less k lt \ tree_less k rt" + by (auto simp add: tree_less_prop) + +lemma tree_greater_simps [simp]: + "tree_greater k Empty = True" + "tree_greater k (Branch c lt kt v rt) \ k < kt \ tree_greater k lt \ tree_greater k rt" + by (auto simp add: tree_greater_prop) + +lemmas tree_ord_props = tree_less_prop tree_greater_prop + +lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys +lemmas tree_less_nit = tree_less_prop entry_in_tree_keys + +lemma tree_less_eq_trans: "l |\ u \ u \ v \ l |\ v" + and tree_less_trans: "t |\ x \ x < y \ t |\ y" + and tree_greater_eq_trans: "u \ v \ v \| r \ u \| r" + and tree_greater_trans: "x < y \ y \| t \ x \| t" + by (auto simp: tree_ord_props) + +primrec sorted :: "('a::linorder, 'b) rbt \ bool" +where + "sorted Empty = True" +| "sorted (Branch c l k v r) = (l |\ k \ k \| r \ sorted l \ sorted r)" + +lemma sorted_entries: + "sorted t \ List.sorted (List.map fst (entries t))" +by (induct t) + (force simp: sorted_append sorted_Cons tree_ord_props + dest!: entry_in_tree_keys)+ + +lemma distinct_entries: + "sorted t \ distinct (List.map fst (entries t))" +by (induct t) + (force simp: sorted_append sorted_Cons tree_ord_props + dest!: entry_in_tree_keys)+ + + +subsubsection {* Tree lookup *} + +primrec lookup :: "('a\linorder, 'b) rbt \ 'a \ 'b" +where + "lookup Empty k = None" +| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)" + +lemma lookup_keys: "sorted t \ dom (lookup t) = set (keys t)" + by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop) + +lemma dom_lookup_Branch: + "sorted (Branch c t1 k v t2) \ + dom (lookup (Branch c t1 k v t2)) + = Set.insert k (dom (lookup t1) \ dom (lookup t2))" +proof - + assume "sorted (Branch c t1 k v t2)" + moreover from this have "sorted t1" "sorted t2" by simp_all + ultimately show ?thesis by (simp add: lookup_keys) +qed + +lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))" +proof (induct t) + case Empty then show ?case by simp +next + case (Branch color t1 a b t2) + let ?A = "Set.insert a (dom (lookup t1) \ dom (lookup t2))" + have "dom (lookup (Branch color t1 a b t2)) \ ?A" by (auto split: split_if_asm) + moreover from Branch have "finite (insert a (dom (lookup t1) \ dom (lookup t2)))" by simp + ultimately show ?case by (rule finite_subset) +qed + +lemma lookup_tree_less[simp]: "t |\ k \ lookup t k = None" +by (induct t) auto + +lemma lookup_tree_greater[simp]: "k \| t \ lookup t k = None" +by (induct t) auto + +lemma lookup_Empty: "lookup Empty = empty" +by (rule ext) simp + +lemma map_of_entries: + "sorted t \ map_of (entries t) = lookup t" +proof (induct t) + case Empty thus ?case by (simp add: lookup_Empty) +next + case (Branch c t1 k v t2) + have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\v] ++ lookup t1" + proof (rule ext) + fix x + from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp + let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \ v] ++ lookup t1) x" + + have DOM_T1: "!!k'. k'\dom (lookup t1) \ k>k'" + proof - + fix k' + from SORTED have "t1 |\ k" by simp + with tree_less_prop have "\k'\set (keys t1). k>k'" by auto + moreover assume "k'\dom (lookup t1)" + ultimately show "k>k'" using lookup_keys SORTED by auto + qed + + have DOM_T2: "!!k'. k'\dom (lookup t2) \ k| t2" by simp + with tree_greater_prop have "\k'\set (keys t2). kdom (lookup t2)" + ultimately show "kdom [k\v]" by simp + moreover have "x\dom (lookup t2)" proof + assume "x\dom (lookup t2)" + with DOM_T2 have "k v] x" by simp + moreover have "x\dom (lookup t1)" proof + assume "x\dom (lookup t1)" + with DOM_T1 have "k>x" by blast + thus False by simp + qed + ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) + } moreover { + assume C: "x>k" + hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x]) + moreover from C have "x\dom [k\v]" by simp + moreover have "x\dom (lookup t1)" proof + assume "x\dom (lookup t1)" + with DOM_T1 have "k>x" by simp + with C show False by simp + qed + ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) + } ultimately show ?thesis using less_linear by blast + qed + also from Branch have "lookup t2 ++ [k \ v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp + finally show ?case by simp +qed + +lemma lookup_in_tree: "sorted t \ lookup t k = Some v \ (k, v) \ set (entries t)" + by (simp add: map_of_entries [symmetric] distinct_entries) + +lemma set_entries_inject: + assumes sorted: "sorted t1" "sorted t2" + shows "set (entries t1) = set (entries t2) \ entries t1 = entries t2" +proof - + from sorted have "distinct (map fst (entries t1))" + "distinct (map fst (entries t2))" + by (auto intro: distinct_entries) + with sorted show ?thesis + by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map) +qed + +lemma entries_eqI: + assumes sorted: "sorted t1" "sorted t2" + assumes lookup: "lookup t1 = lookup t2" + shows "entries t1 = entries t2" +proof - + from sorted lookup have "map_of (entries t1) = map_of (entries t2)" + by (simp add: map_of_entries) + with sorted have "set (entries t1) = set (entries t2)" + by (simp add: map_of_inject_set distinct_entries) + with sorted show ?thesis by (simp add: set_entries_inject) +qed + +lemma entries_lookup: + assumes "sorted t1" "sorted t2" + shows "entries t1 = entries t2 \ lookup t1 = lookup t2" + using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric]) + +lemma lookup_from_in_tree: + assumes "sorted t1" "sorted t2" + and "\v. (k\'a\linorder, v) \ set (entries t1) \ (k, v) \ set (entries t2)" + shows "lookup t1 k = lookup t2 k" +proof - + from assms have "k \ dom (lookup t1) \ k \ dom (lookup t2)" + by (simp add: keys_entries lookup_keys) + with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric]) +qed + + +subsubsection {* Red-black properties *} + +primrec color_of :: "('a, 'b) rbt \ color" +where + "color_of Empty = B" +| "color_of (Branch c _ _ _ _) = c" + +primrec bheight :: "('a,'b) rbt \ nat" +where + "bheight Empty = 0" +| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)" + +primrec inv1 :: "('a, 'b) rbt \ bool" +where + "inv1 Empty = True" +| "inv1 (Branch c lt k v rt) \ inv1 lt \ inv1 rt \ (c = B \ color_of lt = B \ color_of rt = B)" + +primrec inv1l :: "('a, 'b) rbt \ bool" -- {* Weaker version *} +where + "inv1l Empty = True" +| "inv1l (Branch c l k v r) = (inv1 l \ inv1 r)" +lemma [simp]: "inv1 t \ inv1l t" by (cases t) simp+ + +primrec inv2 :: "('a, 'b) rbt \ bool" +where + "inv2 Empty = True" +| "inv2 (Branch c lt k v rt) = (inv2 lt \ inv2 rt \ bheight lt = bheight rt)" + +definition is_rbt :: "('a\linorder, 'b) rbt \ bool" where + "is_rbt t \ inv1 t \ inv2 t \ color_of t = B \ sorted t" + +lemma is_rbt_sorted [simp]: + "is_rbt t \ sorted t" by (simp add: is_rbt_def) + +theorem Empty_is_rbt [simp]: + "is_rbt Empty" by (simp add: is_rbt_def) + + +subsection {* Insertion *} + +fun (* slow, due to massive case splitting *) + balance :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | + "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | + "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | + "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | + "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | + "balance a s t b = Branch B a s t b" + +lemma balance_inv1: "\inv1l l; inv1l r\ \ inv1 (balance l k v r)" + by (induct l k v r rule: balance.induct) auto + +lemma balance_bheight: "bheight l = bheight r \ bheight (balance l k v r) = Suc (bheight l)" + by (induct l k v r rule: balance.induct) auto + +lemma balance_inv2: + assumes "inv2 l" "inv2 r" "bheight l = bheight r" + shows "inv2 (balance l k v r)" + using assms + by (induct l k v r rule: balance.induct) auto + +lemma balance_tree_greater[simp]: "(v \| balance a k x b) = (v \| a \ v \| b \ v < k)" + by (induct a k x b rule: balance.induct) auto + +lemma balance_tree_less[simp]: "(balance a k x b |\ v) = (a |\ v \ b |\ v \ k < v)" + by (induct a k x b rule: balance.induct) auto + +lemma balance_sorted: + fixes k :: "'a::linorder" + assumes "sorted l" "sorted r" "l |\ k" "k \| r" + shows "sorted (balance l k v r)" +using assms proof (induct l k v r rule: balance.induct) + case ("2_2" a x w b y t c z s va vb vd vc) + hence "y < z \ z \| Branch B va vb vd vc" + by (auto simp add: tree_ord_props) + hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) + with "2_2" show ?case by simp +next + case ("3_2" va vb vd vc x w b y s c z) + from "3_2" have "x < y \ tree_less x (Branch B va vb vd vc)" + by simp + hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) + with "3_2" show ?case by simp +next + case ("3_3" x w b y s c z t va vb vd vc) + from "3_3" have "y < z \ tree_greater z (Branch B va vb vd vc)" by simp + hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) + with "3_3" show ?case by simp +next + case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc) + hence "x < y \ tree_less x (Branch B vd ve vg vf)" by simp + hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans) + from "3_4" have "y < z \ tree_greater z (Branch B va vb vii vc)" by simp + hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans) + with 1 "3_4" show ?case by simp +next + case ("4_2" va vb vd vc x w b y s c z t dd) + hence "x < y \ tree_less x (Branch B va vb vd vc)" by simp + hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) + with "4_2" show ?case by simp +next + case ("5_2" x w b y s c z t va vb vd vc) + hence "y < z \ tree_greater z (Branch B va vb vd vc)" by simp + hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) + with "5_2" show ?case by simp +next + case ("5_3" va vb vd vc x w b y s c z t) + hence "x < y \ tree_less x (Branch B va vb vd vc)" by simp + hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans) + with "5_3" show ?case by simp +next + case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf) + hence "x < y \ tree_less x (Branch B va vb vg vc)" by simp + hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans) + from "5_4" have "y < z \ tree_greater z (Branch B vd ve vii vf)" by simp + hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans) + with 1 "5_4" show ?case by simp +qed simp+ + +lemma entries_balance [simp]: + "entries (balance l k v r) = entries l @ (k, v) # entries r" + by (induct l k v r rule: balance.induct) auto + +lemma keys_balance [simp]: + "keys (balance l k v r) = keys l @ k # keys r" + by (simp add: keys_def) + +lemma balance_in_tree: + "entry_in_tree k x (balance l v y r) \ entry_in_tree k x l \ k = v \ x = y \ entry_in_tree k x r" + by (auto simp add: keys_def) + +lemma lookup_balance[simp]: +fixes k :: "'a::linorder" +assumes "sorted l" "sorted r" "l |\ k" "k \| r" +shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x" +by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted) + +primrec paint :: "color \ ('a,'b) rbt \ ('a,'b) rbt" +where + "paint c Empty = Empty" +| "paint c (Branch _ l k v r) = Branch c l k v r" + +lemma paint_inv1l[simp]: "inv1l t \ inv1l (paint c t)" by (cases t) auto +lemma paint_inv1[simp]: "inv1l t \ inv1 (paint B t)" by (cases t) auto +lemma paint_inv2[simp]: "inv2 t \ inv2 (paint c t)" by (cases t) auto +lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto +lemma paint_sorted[simp]: "sorted t \ sorted (paint c t)" by (cases t) auto +lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto +lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto) +lemma paint_tree_greater[simp]: "(v \| paint c t) = (v \| t)" by (cases t) auto +lemma paint_tree_less[simp]: "(paint c t |\ v) = (t |\ v)" by (cases t) auto + +fun + ins :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "ins f k v Empty = Branch R Empty k v Empty" | + "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r + else if k > x then balance l x y (ins f k v r) + else Branch B l x (f k y v) r)" | + "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r + else if k > x then Branch R l x y (ins f k v r) + else Branch R l x (f k y v) r)" + +lemma ins_inv1_inv2: + assumes "inv1 t" "inv2 t" + shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" + "color_of t = B \ inv1 (ins f k x t)" "inv1l (ins f k x t)" + using assms + by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight) + +lemma ins_tree_greater[simp]: "(v \| ins f k x t) = (v \| t \ k > v)" + by (induct f k x t rule: ins.induct) auto +lemma ins_tree_less[simp]: "(ins f k x t |\ v) = (t |\ v \ k < v)" + by (induct f k x t rule: ins.induct) auto +lemma ins_sorted[simp]: "sorted t \ sorted (ins f k x t)" + by (induct f k x t rule: ins.induct) (auto simp: balance_sorted) + +lemma keys_ins: "set (keys (ins f k v t)) = { k } \ set (keys t)" + by (induct f k v t rule: ins.induct) auto + +lemma lookup_ins: + fixes k :: "'a::linorder" + assumes "sorted t" + shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \ v + | Some w \ f k w v)) x" +using assms by (induct f k v t rule: ins.induct) auto + +definition + insert_with_key :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "insert_with_key f k v t = paint B (ins f k v t)" + +lemma insertwk_sorted: "sorted t \ sorted (insert_with_key f k x t)" + by (auto simp: insert_with_key_def) + +theorem insertwk_is_rbt: + assumes inv: "is_rbt t" + shows "is_rbt (insert_with_key f k x t)" +using assms +unfolding insert_with_key_def is_rbt_def +by (auto simp: ins_inv1_inv2) + +lemma lookup_insertwk: + assumes "sorted t" + shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \ v + | Some w \ f k w v)) x" +unfolding insert_with_key_def using assms +by (simp add:lookup_ins) + +definition + insertw_def: "insert_with f = insert_with_key (\_. f)" + +lemma insertw_sorted: "sorted t \ sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def) +theorem insertw_is_rbt: "is_rbt t \ is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def) + +lemma lookup_insertw: + assumes "is_rbt t" + shows "lookup (insert_with f k v t) = (lookup t)(k \ (if k:dom (lookup t) then f (the (lookup t k)) v else v))" +using assms +unfolding insertw_def +by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def) + +definition insert :: "'a\linorder \ 'b \ ('a, 'b) rbt \ ('a, 'b) rbt" where + "insert = insert_with_key (\_ _ nv. nv)" + +lemma insert_sorted: "sorted t \ sorted (insert k v t)" by (simp add: insertwk_sorted insert_def) +theorem insert_is_rbt [simp]: "is_rbt t \ is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def) + +lemma lookup_insert: + assumes "is_rbt t" + shows "lookup (insert k v t) = (lookup t)(k\v)" +unfolding insert_def +using assms +by (rule_tac ext) (simp add: lookup_insertwk split:option.split) + + +subsection {* Deletion *} + +lemma bheight_paintR'[simp]: "color_of t = B \ bheight (paint R t) = bheight t - 1" +by (cases t rule: rbt_cases) auto + +fun + balance_left :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" | + "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" | + "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" | + "balance_left t k x s = Empty" + +lemma balance_left_inv2_with_inv1: + assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt" + shows "bheight (balance_left lt k v rt) = bheight lt + 1" + and "inv2 (balance_left lt k v rt)" +using assms +by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight) + +lemma balance_left_inv2_app: + assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B" + shows "inv2 (balance_left lt k v rt)" + "bheight (balance_left lt k v rt) = bheight rt" +using assms +by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ + +lemma balance_left_inv1: "\inv1l a; inv1 b; color_of b = B\ \ inv1 (balance_left a k x b)" + by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+ + +lemma balance_left_inv1l: "\ inv1l lt; inv1 rt \ \ inv1l (balance_left lt k x rt)" +by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1) + +lemma balance_left_sorted: "\ sorted l; sorted r; tree_less k l; tree_greater k r \ \ sorted (balance_left l k v r)" +apply (induct l k v r rule: balance_left.induct) +apply (auto simp: balance_sorted) +apply (unfold tree_greater_prop tree_less_prop) +by force+ + +lemma balance_left_tree_greater: + fixes k :: "'a::order" + assumes "k \| a" "k \| b" "k < x" + shows "k \| balance_left a x t b" +using assms +by (induct a x t b rule: balance_left.induct) auto + +lemma balance_left_tree_less: + fixes k :: "'a::order" + assumes "a |\ k" "b |\ k" "x < k" + shows "balance_left a x t b |\ k" +using assms +by (induct a x t b rule: balance_left.induct) auto + +lemma balance_left_in_tree: + assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r" + shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \ k = a \ v = b \ entry_in_tree k v r)" +using assms +by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree) + +fun + balance_right :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" | + "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" | + "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" | + "balance_right t k x s = Empty" + +lemma balance_right_inv2_with_inv1: + assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt" + shows "inv2 (balance_right lt k v rt) \ bheight (balance_right lt k v rt) = bheight lt" +using assms +by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight) + +lemma balance_right_inv1: "\inv1 a; inv1l b; color_of a = B\ \ inv1 (balance_right a k x b)" +by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+ + +lemma balance_right_inv1l: "\ inv1 lt; inv1l rt \ \inv1l (balance_right lt k x rt)" +by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1) + +lemma balance_right_sorted: "\ sorted l; sorted r; tree_less k l; tree_greater k r \ \ sorted (balance_right l k v r)" +apply (induct l k v r rule: balance_right.induct) +apply (auto simp:balance_sorted) +apply (unfold tree_less_prop tree_greater_prop) +by force+ + +lemma balance_right_tree_greater: + fixes k :: "'a::order" + assumes "k \| a" "k \| b" "k < x" + shows "k \| balance_right a x t b" +using assms by (induct a x t b rule: balance_right.induct) auto + +lemma balance_right_tree_less: + fixes k :: "'a::order" + assumes "a |\ k" "b |\ k" "x < k" + shows "balance_right a x t b |\ k" +using assms by (induct a x t b rule: balance_right.induct) auto + +lemma balance_right_in_tree: + assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r" + shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \ x = k \ y = v \ entry_in_tree x y r)" +using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree) + +fun + combine :: "('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" +where + "combine Empty x = x" +| "combine x Empty = x" +| "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of + Branch R b2 t z c2 \ (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) | + bc \ Branch R a k x (Branch R bc s y d))" +| "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of + Branch R b2 t z c2 \ Branch R (Branch B a k x b2) t z (Branch B c2 s y d) | + bc \ balance_left a k x (Branch B bc s y d))" +| "combine a (Branch R b k x c) = Branch R (combine a b) k x c" +| "combine (Branch R a k x b) c = Branch R a k x (combine b c)" + +lemma combine_inv2: + assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt" + shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)" +using assms +by (induct lt rt rule: combine.induct) + (auto simp: balance_left_inv2_app split: rbt.splits color.splits) + +lemma combine_inv1: + assumes "inv1 lt" "inv1 rt" + shows "color_of lt = B \ color_of rt = B \ inv1 (combine lt rt)" + "inv1l (combine lt rt)" +using assms +by (induct lt rt rule: combine.induct) + (auto simp: balance_left_inv1 split: rbt.splits color.splits) + +lemma combine_tree_greater[simp]: + fixes k :: "'a::linorder" + assumes "k \| l" "k \| r" + shows "k \| combine l r" +using assms +by (induct l r rule: combine.induct) + (auto simp: balance_left_tree_greater split:rbt.splits color.splits) + +lemma combine_tree_less[simp]: + fixes k :: "'a::linorder" + assumes "l |\ k" "r |\ k" + shows "combine l r |\ k" +using assms +by (induct l r rule: combine.induct) + (auto simp: balance_left_tree_less split:rbt.splits color.splits) + +lemma combine_sorted: + fixes k :: "'a::linorder" + assumes "sorted l" "sorted r" "l |\ k" "k \| r" + shows "sorted (combine l r)" +using assms proof (induct l r rule: combine.induct) + case (3 a x v b c y w d) + hence ineqs: "a |\ x" "x \| b" "b |\ k" "k \| c" "c |\ y" "y \| d" + by auto + with 3 + show ?case + by (cases "combine b c" rule: rbt_cases) + (auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+) +next + case (4 a x v b c y w d) + hence "x < k \ tree_greater k c" by simp + hence "tree_greater x c" by (blast dest: tree_greater_trans) + with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater) + from 4 have "k < y \ tree_less k b" by simp + hence "tree_less y b" by (blast dest: tree_less_trans) + with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less) + show ?case + proof (cases "combine b c" rule: rbt_cases) + case Empty + from 4 have "x < y \ tree_greater y d" by auto + hence "tree_greater x d" by (blast dest: tree_greater_trans) + with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto + with Empty show ?thesis by (simp add: balance_left_sorted) + next + case (Red lta va ka rta) + with 2 4 have "x < va \ tree_less x a" by simp + hence 5: "tree_less va a" by (blast dest: tree_less_trans) + from Red 3 4 have "va < y \ tree_greater y d" by simp + hence "tree_greater va d" by (blast dest: tree_greater_trans) + with Red 2 3 4 5 show ?thesis by simp + next + case (Black lta va ka rta) + from 4 have "x < y \ tree_greater y d" by auto + hence "tree_greater x d" by (blast dest: tree_greater_trans) + with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto + with Black show ?thesis by (simp add: balance_left_sorted) + qed +next + case (5 va vb vd vc b x w c) + hence "k < x \ tree_less k (Branch B va vb vd vc)" by simp + hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans) + with 5 show ?case by (simp add: combine_tree_less) +next + case (6 a x v b va vb vd vc) + hence "x < k \ tree_greater k (Branch B va vb vd vc)" by simp + hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans) + with 6 show ?case by (simp add: combine_tree_greater) +qed simp+ + +lemma combine_in_tree: + assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r" + shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \ entry_in_tree k v r)" +using assms +proof (induct l r rule: combine.induct) + case (4 _ _ _ b c) + hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2) + from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1) + + show ?case + proof (cases "combine b c" rule: rbt_cases) + case Empty + with 4 a show ?thesis by (auto simp: balance_left_in_tree) + next + case (Red lta ka va rta) + with 4 show ?thesis by auto + next + case (Black lta ka va rta) + with a b 4 show ?thesis by (auto simp: balance_left_in_tree) + qed +qed (auto split: rbt.splits color.splits) + +fun + del_from_left :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and + del_from_right :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and + del :: "('a\linorder) \ ('a,'b) rbt \ ('a,'b) rbt" +where + "del x Empty = Empty" | + "del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" | + "del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" | + "del_from_left x a y s b = Branch R (del x a) y s b" | + "del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" | + "del_from_right x a y s b = Branch R a y s (del x b)" + +lemma + assumes "inv2 lt" "inv1 lt" + shows + "\inv2 rt; bheight lt = bheight rt; inv1 rt\ \ + inv2 (del_from_left x lt k v rt) \ bheight (del_from_left x lt k v rt) = bheight lt \ (color_of lt = B \ color_of rt = B \ inv1 (del_from_left x lt k v rt) \ (color_of lt \ B \ color_of rt \ B) \ inv1l (del_from_left x lt k v rt))" + and "\inv2 rt; bheight lt = bheight rt; inv1 rt\ \ + inv2 (del_from_right x lt k v rt) \ bheight (del_from_right x lt k v rt) = bheight lt \ (color_of lt = B \ color_of rt = B \ inv1 (del_from_right x lt k v rt) \ (color_of lt \ B \ color_of rt \ B) \ inv1l (del_from_right x lt k v rt))" + and del_inv1_inv2: "inv2 (del x lt) \ (color_of lt = R \ bheight (del x lt) = bheight lt \ inv1 (del x lt) + \ color_of lt = B \ bheight (del x lt) = bheight lt - 1 \ inv1l (del x lt))" +using assms +proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct) +case (2 y c _ y') + have "y = y' \ y < y' \ y > y'" by auto + thus ?case proof (elim disjE) + assume "y = y'" + with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+ + next + assume "y < y'" + with 2 show ?thesis by (cases c) auto + next + assume "y' < y" + with 2 show ?thesis by (cases c) auto + qed +next + case (3 y lt z v rta y' ss bb) + thus ?case by (cases "color_of (Branch B lt z v rta) = B \ color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+ +next + case (5 y a y' ss lt z v rta) + thus ?case by (cases "color_of a = B \ color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+ +next + case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \ color_of Empty = B") simp+ +qed auto + +lemma + del_from_left_tree_less: "\tree_less v lt; tree_less v rt; k < v\ \ tree_less v (del_from_left x lt k y rt)" + and del_from_right_tree_less: "\tree_less v lt; tree_less v rt; k < v\ \ tree_less v (del_from_right x lt k y rt)" + and del_tree_less: "tree_less v lt \ tree_less v (del x lt)" +by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) + (auto simp: balance_left_tree_less balance_right_tree_less) + +lemma del_from_left_tree_greater: "\tree_greater v lt; tree_greater v rt; k > v\ \ tree_greater v (del_from_left x lt k y rt)" + and del_from_right_tree_greater: "\tree_greater v lt; tree_greater v rt; k > v\ \ tree_greater v (del_from_right x lt k y rt)" + and del_tree_greater: "tree_greater v lt \ tree_greater v (del x lt)" +by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) + (auto simp: balance_left_tree_greater balance_right_tree_greater) + +lemma "\sorted lt; sorted rt; tree_less k lt; tree_greater k rt\ \ sorted (del_from_left x lt k y rt)" + and "\sorted lt; sorted rt; tree_less k lt; tree_greater k rt\ \ sorted (del_from_right x lt k y rt)" + and del_sorted: "sorted lt \ sorted (del x lt)" +proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) + case (3 x lta zz v rta yy ss bb) + from 3 have "tree_less yy (Branch B lta zz v rta)" by simp + hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less) + with 3 show ?case by (simp add: balance_left_sorted) +next + case ("4_2" x vaa vbb vdd vc yy ss bb) + hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp + hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less) + with "4_2" show ?case by simp +next + case (5 x aa yy ss lta zz v rta) + hence "tree_greater yy (Branch B lta zz v rta)" by simp + hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater) + with 5 show ?case by (simp add: balance_right_sorted) +next + case ("6_2" x aa yy ss vaa vbb vdd vc) + hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp + hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater) + with "6_2" show ?case by simp +qed (auto simp: combine_sorted) + +lemma "\sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\ \ entry_in_tree k v (del_from_left x lt kt y rt) = (False \ (x \ k \ entry_in_tree k v (Branch c lt kt y rt)))" + and "\sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\ \ entry_in_tree k v (del_from_right x lt kt y rt) = (False \ (x \ k \ entry_in_tree k v (Branch c lt kt y rt)))" + and del_in_tree: "\sorted t; inv1 t; inv2 t\ \ entry_in_tree k v (del x t) = (False \ (x \ k \ entry_in_tree k v t))" +proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct) + case (2 xx c aa yy ss bb) + have "xx = yy \ xx < yy \ xx > yy" by auto + from this 2 show ?case proof (elim disjE) + assume "xx = yy" + with 2 show ?thesis proof (cases "xx = k") + case True + from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \ k = yy" by simp + hence "\ entry_in_tree k v aa" "\ entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop) + with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree) + qed (simp add: combine_in_tree) + qed simp+ +next + case (3 xx lta zz vv rta yy ss bb) + def mt[simp]: mt == "Branch B lta zz vv rta" + from 3 have "inv2 mt \ inv1 mt" by simp + hence "inv2 (del xx mt) \ (color_of mt = R \ bheight (del xx mt) = bheight mt \ inv1 (del xx mt) \ color_of mt = B \ bheight (del xx mt) = bheight mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) + with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \ xx \ k \ entry_in_tree k v mt \ (k = yy \ v = ss) \ entry_in_tree k v bb)" by (simp add: balance_left_in_tree) + thus ?case proof (cases "xx = k") + case True + from 3 True have "tree_greater yy bb \ yy > k" by simp + hence "tree_greater k bb" by (blast dest: tree_greater_trans) + with 3 4 True show ?thesis by (auto simp: tree_greater_nit) + qed auto +next + case ("4_1" xx yy ss bb) + show ?case proof (cases "xx = k") + case True + with "4_1" have "tree_greater yy bb \ k < yy" by simp + hence "tree_greater k bb" by (blast dest: tree_greater_trans) + with "4_1" `xx = k` + have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit) + thus ?thesis by auto + qed simp+ +next + case ("4_2" xx vaa vbb vdd vc yy ss bb) + thus ?case proof (cases "xx = k") + case True + with "4_2" have "k < yy \ tree_greater yy bb" by simp + hence "tree_greater k bb" by (blast dest: tree_greater_trans) + with True "4_2" show ?thesis by (auto simp: tree_greater_nit) + qed auto +next + case (5 xx aa yy ss lta zz vv rta) + def mt[simp]: mt == "Branch B lta zz vv rta" + from 5 have "inv2 mt \ inv1 mt" by simp + hence "inv2 (del xx mt) \ (color_of mt = R \ bheight (del xx mt) = bheight mt \ inv1 (del xx mt) \ color_of mt = B \ bheight (del xx mt) = bheight mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) + with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \ (k = yy \ v = ss) \ False \ xx \ k \ entry_in_tree k v mt)" by (simp add: balance_right_in_tree) + thus ?case proof (cases "xx = k") + case True + from 5 True have "tree_less yy aa \ yy < k" by simp + hence "tree_less k aa" by (blast dest: tree_less_trans) + with 3 5 True show ?thesis by (auto simp: tree_less_nit) + qed auto +next + case ("6_1" xx aa yy ss) + show ?case proof (cases "xx = k") + case True + with "6_1" have "tree_less yy aa \ k > yy" by simp + hence "tree_less k aa" by (blast dest: tree_less_trans) + with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit) + qed simp +next + case ("6_2" xx aa yy ss vaa vbb vdd vc) + thus ?case proof (cases "xx = k") + case True + with "6_2" have "k > yy \ tree_less yy aa" by simp + hence "tree_less k aa" by (blast dest: tree_less_trans) + with True "6_2" show ?thesis by (auto simp: tree_less_nit) + qed auto +qed simp + + +definition delete where + delete_def: "delete k t = paint B (del k t)" + +theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)" +proof - + from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto + hence "inv2 (del k t) \ (color_of t = R \ bheight (del k t) = bheight t \ inv1 (del k t) \ color_of t = B \ bheight (del k t) = bheight t - 1 \ inv1l (del k t))" by (rule del_inv1_inv2) + hence "inv2 (del k t) \ inv1l (del k t)" by (cases "color_of t") auto + with assms show ?thesis + unfolding is_rbt_def delete_def + by (auto intro: paint_sorted del_sorted) +qed + +lemma delete_in_tree: + assumes "is_rbt t" + shows "entry_in_tree k v (delete x t) = (x \ k \ entry_in_tree k v t)" + using assms unfolding is_rbt_def delete_def + by (auto simp: del_in_tree) + +lemma lookup_delete: + assumes is_rbt: "is_rbt t" + shows "lookup (delete k t) = (lookup t)|`(-{k})" +proof + fix x + show "lookup (delete k t) x = (lookup t |` (-{k})) x" + proof (cases "x = k") + assume "x = k" + with is_rbt show ?thesis + by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree) + next + assume "x \ k" + thus ?thesis + by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree) + qed +qed + + +subsection {* Union *} + +primrec + union_with_key :: "('a\linorder \ 'b \ 'b \ 'b) \ ('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" +where + "union_with_key f t Empty = t" +| "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt" + +lemma unionwk_sorted: "sorted lt \ sorted (union_with_key f lt rt)" + by (induct rt arbitrary: lt) (auto simp: insertwk_sorted) +theorem unionwk_is_rbt[simp]: "is_rbt lt \ is_rbt (union_with_key f lt rt)" + by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+ + +definition + union_with where + "union_with f = union_with_key (\_. f)" + +theorem unionw_is_rbt: "is_rbt lt \ is_rbt (union_with f lt rt)" unfolding union_with_def by simp + +definition union where + "union = union_with_key (%_ _ rv. rv)" + +theorem union_is_rbt: "is_rbt lt \ is_rbt (union lt rt)" unfolding union_def by simp + +lemma union_Branch[simp]: + "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt" + unfolding union_def insert_def + by simp + +lemma lookup_union: + assumes "is_rbt s" "sorted t" + shows "lookup (union s t) = lookup s ++ lookup t" +using assms +proof (induct t arbitrary: s) + case Empty thus ?case by (auto simp: union_def) +next + case (Branch c l k v r s) + then have "sorted r" "sorted l" "l |\ k" "k \| r" by auto + + have meq: "lookup s(k \ v) ++ lookup l ++ lookup r = + lookup s ++ + (\a. if a < k then lookup l a + else if k < a then lookup r a else Some v)" (is "?m1 = ?m2") + proof (rule ext) + fix a + + have "k < a \ k = a \ k > a" by auto + thus "?m1 a = ?m2 a" + proof (elim disjE) + assume "k < a" + with `l |\ k` have "l |\ a" by (rule tree_less_trans) + with `k < a` show ?thesis + by (auto simp: map_add_def split: option.splits) + next + assume "k = a" + with `l |\ k` `k \| r` + show ?thesis by (auto simp: map_add_def) + next + assume "a < k" + from this `k \| r` have "a \| r" by (rule tree_greater_trans) + with `a < k` show ?thesis + by (auto simp: map_add_def split: option.splits) + qed + qed + + from Branch have is_rbt: "is_rbt (RBT_Impl.union (RBT_Impl.insert k v s) l)" + by (auto intro: union_is_rbt insert_is_rbt) + with Branch have IHs: + "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r" + "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l" + by auto + + with meq show ?case + by (auto simp: lookup_insert[OF Branch(3)]) + +qed + + +subsection {* Modifying existing entries *} + +primrec + map_entry :: "'a\linorder \ ('b \ 'b) \ ('a, 'b) rbt \ ('a, 'b) rbt" +where + "map_entry k f Empty = Empty" +| "map_entry k f (Branch c lt x v rt) = + (if k < x then Branch c (map_entry k f lt) x v rt + else if k > x then (Branch c lt x v (map_entry k f rt)) + else Branch c lt x (f v) rt)" + +lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+ +lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+ +lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+ +lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+ +lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+ +lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t" + by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater) + +theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t" +unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 ) + +theorem lookup_map_entry: + "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" + by (induct t) (auto split: option.splits simp add: expand_fun_eq) + + +subsection {* Mapping all entries *} + +primrec + map :: "('a \ 'b \ 'c) \ ('a, 'b) rbt \ ('a, 'c) rbt" +where + "map f Empty = Empty" +| "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)" + +lemma map_entries [simp]: "entries (map f t) = List.map (\(k, v). (k, f k v)) (entries t)" + by (induct t) auto +lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def) +lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+ +lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+ +lemma map_sorted: "sorted (map f t) = sorted t" by (induct t) (simp add: map_tree_less map_tree_greater)+ +lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+ +lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+ +lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+ +theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" +unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of) + +theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)" + by (induct t) auto + + +subsection {* Folding over entries *} + +definition fold :: "('a \ 'b \ 'c \ 'c) \ ('a, 'b) rbt \ 'c \ 'c" where + "fold f t s = foldl (\s (k, v). f k v s) s (entries t)" + +lemma fold_simps [simp, code]: + "fold f Empty = id" + "fold f (Branch c lt k v rt) = fold f rt \ f k v \ fold f lt" + by (simp_all add: fold_def expand_fun_eq) + + +subsection {* Bulkloading a tree *} + +definition bulkload :: "('a \ 'b) list \ ('a\linorder, 'b) rbt" where + "bulkload xs = foldr (\(k, v). insert k v) xs Empty" + +lemma bulkload_is_rbt [simp, intro]: + "is_rbt (bulkload xs)" + unfolding bulkload_def by (induct xs) auto + +lemma lookup_bulkload: + "lookup (bulkload xs) = map_of xs" +proof - + obtain ys where "ys = rev xs" by simp + have "\t. is_rbt t \ + lookup (foldl (\t (k, v). insert k v t) t ys) = lookup t ++ map_of (rev ys)" + by (induct ys) (simp_all add: bulkload_def split_def lookup_insert) + from this Empty_is_rbt have + "lookup (foldl (\t (k, v). insert k v t) Empty (rev xs)) = lookup Empty ++ map_of xs" + by (simp add: `ys = rev xs`) + then show ?thesis by (simp add: bulkload_def foldl_foldr lookup_Empty split_def) +qed + +hide (open) const Empty insert delete entries keys bulkload lookup map_entry map fold union sorted + +end diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/Library/Table.thy --- a/src/HOL/Library/Table.thy Wed Apr 14 22:18:10 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,229 +0,0 @@ -(* Author: Florian Haftmann, TU Muenchen *) - -header {* Tables: finite mappings implemented by red-black trees *} - -theory Table -imports Main RBT Mapping -begin - -subsection {* Type definition *} - -typedef (open) ('a, 'b) table = "{t :: ('a\linorder, 'b) rbt. is_rbt t}" - morphisms tree_of Table -proof - - have "RBT.Empty \ ?table" by simp - then show ?thesis .. -qed - -lemma is_rbt_tree_of [simp, intro]: - "is_rbt (tree_of t)" - using tree_of [of t] by simp - -lemma table_eq: - "t1 = t2 \ tree_of t1 = tree_of t2" - by (simp add: tree_of_inject) - -lemma [code abstype]: - "Table (tree_of t) = t" - by (simp add: tree_of_inverse) - - -subsection {* Primitive operations *} - -definition lookup :: "('a\linorder, 'b) table \ 'a \ 'b" where - [code]: "lookup t = RBT.lookup (tree_of t)" - -definition empty :: "('a\linorder, 'b) table" where - "empty = Table RBT.Empty" - -lemma tree_of_empty [code abstract]: - "tree_of empty = RBT.Empty" - by (simp add: empty_def Table_inverse) - -definition update :: "'a\linorder \ 'b \ ('a, 'b) table \ ('a, 'b) table" where - "update k v t = Table (RBT.insert k v (tree_of t))" - -lemma tree_of_update [code abstract]: - "tree_of (update k v t) = RBT.insert k v (tree_of t)" - by (simp add: update_def Table_inverse) - -definition delete :: "'a\linorder \ ('a, 'b) table \ ('a, 'b) table" where - "delete k t = Table (RBT.delete k (tree_of t))" - -lemma tree_of_delete [code abstract]: - "tree_of (delete k t) = RBT.delete k (tree_of t)" - by (simp add: delete_def Table_inverse) - -definition entries :: "('a\linorder, 'b) table \ ('a \ 'b) list" where - [code]: "entries t = RBT.entries (tree_of t)" - -definition keys :: "('a\linorder, 'b) table \ 'a list" where - [code]: "keys t = RBT.keys (tree_of t)" - -definition bulkload :: "('a\linorder \ 'b) list \ ('a, 'b) table" where - "bulkload xs = Table (RBT.bulkload xs)" - -lemma tree_of_bulkload [code abstract]: - "tree_of (bulkload xs) = RBT.bulkload xs" - by (simp add: bulkload_def Table_inverse) - -definition map_entry :: "'a \ ('b \ 'b) \ ('a\linorder, 'b) table \ ('a, 'b) table" where - "map_entry k f t = Table (RBT.map_entry k f (tree_of t))" - -lemma tree_of_map_entry [code abstract]: - "tree_of (map_entry k f t) = RBT.map_entry k f (tree_of t)" - by (simp add: map_entry_def Table_inverse) - -definition map :: "('a \ 'b \ 'b) \ ('a\linorder, 'b) table \ ('a, 'b) table" where - "map f t = Table (RBT.map f (tree_of t))" - -lemma tree_of_map [code abstract]: - "tree_of (map f t) = RBT.map f (tree_of t)" - by (simp add: map_def Table_inverse) - -definition fold :: "('a \ 'b \ 'c \ 'c) \ ('a\linorder, 'b) table \ 'c \ 'c" where - [code]: "fold f t = RBT.fold f (tree_of t)" - - -subsection {* Derived operations *} - -definition is_empty :: "('a\linorder, 'b) table \ bool" where - [code]: "is_empty t = (case tree_of t of RBT.Empty \ True | _ \ False)" - - -subsection {* Abstract lookup properties *} - -lemma lookup_Table: - "is_rbt t \ lookup (Table t) = RBT.lookup t" - by (simp add: lookup_def Table_inverse) - -lemma lookup_tree_of: - "RBT.lookup (tree_of t) = lookup t" - by (simp add: lookup_def) - -lemma entries_tree_of: - "RBT.entries (tree_of t) = entries t" - by (simp add: entries_def) - -lemma keys_tree_of: - "RBT.keys (tree_of t) = keys t" - by (simp add: keys_def) - -lemma lookup_empty [simp]: - "lookup empty = Map.empty" - by (simp add: empty_def lookup_Table expand_fun_eq) - -lemma lookup_update [simp]: - "lookup (update k v t) = (lookup t)(k \ v)" - by (simp add: update_def lookup_Table lookup_insert lookup_tree_of) - -lemma lookup_delete [simp]: - "lookup (delete k t) = (lookup t)(k := None)" - by (simp add: delete_def lookup_Table RBT.lookup_delete lookup_tree_of restrict_complement_singleton_eq) - -lemma map_of_entries [simp]: - "map_of (entries t) = lookup t" - by (simp add: entries_def map_of_entries lookup_tree_of) - -lemma entries_lookup: - "entries t1 = entries t2 \ lookup t1 = lookup t2" - by (simp add: entries_def lookup_def entries_lookup) - -lemma lookup_bulkload [simp]: - "lookup (bulkload xs) = map_of xs" - by (simp add: bulkload_def lookup_Table RBT.lookup_bulkload) - -lemma lookup_map_entry [simp]: - "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" - by (simp add: map_entry_def lookup_Table lookup_map_entry lookup_tree_of) - -lemma lookup_map [simp]: - "lookup (map f t) k = Option.map (f k) (lookup t k)" - by (simp add: map_def lookup_Table lookup_map lookup_tree_of) - -lemma fold_fold: - "fold f t = (\s. foldl (\s (k, v). f k v s) s (entries t))" - by (simp add: fold_def expand_fun_eq RBT.fold_def entries_tree_of) - -lemma is_empty_empty [simp]: - "is_empty t \ t = empty" - by (simp add: table_eq is_empty_def tree_of_empty split: rbt.split) - -lemma RBT_lookup_empty [simp]: (*FIXME*) - "RBT.lookup t = Map.empty \ t = RBT.Empty" - by (cases t) (auto simp add: expand_fun_eq) - -lemma lookup_empty_empty [simp]: - "lookup t = Map.empty \ t = empty" - by (cases t) (simp add: empty_def lookup_def Table_inject Table_inverse) - -lemma sorted_keys [iff]: - "sorted (keys t)" - by (simp add: keys_def RBT.keys_def sorted_entries) - -lemma distinct_keys [iff]: - "distinct (keys t)" - by (simp add: keys_def RBT.keys_def distinct_entries) - - -subsection {* Implementation of mappings *} - -definition Mapping :: "('a\linorder, 'b) table \ ('a, 'b) mapping" where - "Mapping t = Mapping.Mapping (lookup t)" - -code_datatype Mapping - -lemma lookup_Mapping [simp, code]: - "Mapping.lookup (Mapping t) = lookup t" - by (simp add: Mapping_def) - -lemma empty_Mapping [code]: - "Mapping.empty = Mapping empty" - by (rule mapping_eqI) simp - -lemma is_empty_Mapping [code]: - "Mapping.is_empty (Mapping t) \ is_empty t" - by (simp add: table_eq Mapping.is_empty_empty Mapping_def) - -lemma update_Mapping [code]: - "Mapping.update k v (Mapping t) = Mapping (update k v t)" - by (rule mapping_eqI) simp - -lemma delete_Mapping [code]: - "Mapping.delete k (Mapping xs) = Mapping (delete k xs)" - by (rule mapping_eqI) simp - -lemma keys_Mapping [code]: - "Mapping.keys (Mapping t) = set (keys t)" - by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys) - -lemma ordered_keys_Mapping [code]: - "Mapping.ordered_keys (Mapping t) = keys t" - by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping) - -lemma Mapping_size_card_keys: (*FIXME*) - "Mapping.size m = card (Mapping.keys m)" - by (simp add: Mapping.size_def Mapping.keys_def) - -lemma size_Mapping [code]: - "Mapping.size (Mapping t) = length (keys t)" - by (simp add: Mapping_size_card_keys keys_Mapping distinct_card) - -lemma tabulate_Mapping [code]: - "Mapping.tabulate ks f = Mapping (bulkload (List.map (\k. (k, f k)) ks))" - by (rule mapping_eqI) (simp add: map_of_map_restrict) - -lemma bulkload_Mapping [code]: - "Mapping.bulkload vs = Mapping (bulkload (List.map (\n. (n, vs ! n)) [0.. x = y" by (fact eq_equals) (*FIXME*) - -lemma eq_Mapping [code]: - "HOL.eq (Mapping t1) (Mapping t2) \ entries t1 = entries t2" - by (simp add: eq Mapping_def entries_lookup) - -hide (open) const tree_of lookup empty update delete - entries keys bulkload map_entry map fold - -end diff -r 7bfbb247a5df -r b43b22f63665 src/HOL/ex/Codegenerator_Candidates.thy --- a/src/HOL/ex/Codegenerator_Candidates.thy Wed Apr 14 22:18:10 2010 +0200 +++ b/src/HOL/ex/Codegenerator_Candidates.thy Thu Apr 15 12:27:14 2010 +0200 @@ -20,8 +20,8 @@ "~~/src/HOL/Number_Theory/Primes" Product_ord "~~/src/HOL/ex/Records" + RBT SetsAndFunctions - Table While_Combinator Word begin