# HG changeset patch # User haftmann # Date 1277731946 -7200 # Node ID b47dd044a1f18938b1e7a3924368cef916543d12 # Parent 625bc011768a817a0bd2ff8b10283eec023533d4 inner_simps is not enough, need also local facts diff -r 625bc011768a -r b47dd044a1f1 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Jun 28 15:32:26 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Jun 28 15:32:26 2010 +0200 @@ -707,7 +707,7 @@ case False have "norm (f b - f a) * norm (f b - f a) = norm (f b - f a)^2" by(simp add: power2_eq_square) also have "\ = (f b - f a) \ (f b - f a)" unfolding power2_norm_eq_inner .. - also have "\ = (f b - f a) \ f' x (b - a)" using x unfolding inner_simps by auto + also have "\ = (f b - f a) \ f' x (b - a)" using x unfolding inner_simps by (auto simp add: inner_diff_left) also have "\ \ norm (f b - f a) * norm (f' x (b - a))" by(rule norm_cauchy_schwarz) finally show ?thesis using False x(1) by(auto simp add: real_mult_left_cancel) next case True thus ?thesis using assms(1) apply(rule_tac x="(a + b) /2" in bexI) by auto qed qed diff -r 625bc011768a -r b47dd044a1f1 src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Jun 28 15:32:26 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Jun 28 15:32:26 2010 +0200 @@ -15,7 +15,7 @@ lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" by auto -abbreviation inner_bullet (infix "\" 70) where "x \ y \ inner x y" +notation inner (infix "\" 70) subsection {* A connectedness or intermediate value lemma with several applications. *} @@ -466,8 +466,8 @@ "orthogonal x a \ orthogonal (-x) a" "orthogonal x a \ orthogonal y a \ orthogonal (x + y) a" "orthogonal x a \ orthogonal y a \ orthogonal (x - y) a" - unfolding orthogonal_def inner_simps by auto - + unfolding orthogonal_def inner_simps inner_add_left inner_add_right inner_diff_left inner_diff_right (*FIXME*) by auto + end lemma orthogonal_commute: "orthogonal x y \ orthogonal y x"