# HG changeset patch # User wenzelm # Date 1393795492 -3600 # Node ID b56fda32bf24dac75fe69e13b10ec934281d1b06 # Parent a05413276a0db1acd328fa5d97448e6272f4e6c2 tuned whitespace; diff -r a05413276a0d -r b56fda32bf24 src/HOL/Decision_Procs/langford.ML --- a/src/HOL/Decision_Procs/langford.ML Sun Mar 02 22:03:27 2014 +0100 +++ b/src/HOL/Decision_Procs/langford.ML Sun Mar 02 22:24:52 2014 +0100 @@ -21,7 +21,7 @@ fun prove_finite cT u = let - val [th0, th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"} + val [th0, th1] = map (instantiate' [SOME cT] []) @{thms finite.intros} fun ins x th = Thm.implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg) (Thm.cprop_of th), SOME x] th1) th @@ -33,176 +33,193 @@ (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms ball_simps simp_thms}))); fun basic_dloqe ctxt stupid dlo_qeth dlo_qeth_nolb dlo_qeth_noub gather ep = - case term_of ep of - Const(@{const_name Ex},_)$_ => - let - val p = Thm.dest_arg ep - val ths = - simplify (put_simpset HOL_basic_ss ctxt addsimps gather) (instantiate' [] [SOME p] stupid) - val (L,U) = - let - val (_, q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths)) - in (Thm.dest_arg1 q |> Thm.dest_arg1, Thm.dest_arg q |> Thm.dest_arg1) - end - fun proveneF S = - let val (a,A) = Thm.dest_comb S |>> Thm.dest_arg - val cT = ctyp_of_term a - val ne = instantiate' [SOME cT] [SOME a, SOME A] - @{thm insert_not_empty} - val f = prove_finite cT (dest_set S) - in (ne, f) end + (case term_of ep of + Const (@{const_name Ex}, _) $ _ => + let + val p = Thm.dest_arg ep + val ths = + simplify (put_simpset HOL_basic_ss ctxt addsimps gather) + (instantiate' [] [SOME p] stupid) + val (L, U) = + let val (_, q) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of ths)) + in (Thm.dest_arg1 q |> Thm.dest_arg1, Thm.dest_arg q |> Thm.dest_arg1) end + fun proveneF S = + let + val (a, A) = Thm.dest_comb S |>> Thm.dest_arg + val cT = ctyp_of_term a + val ne = instantiate' [SOME cT] [SOME a, SOME A] @{thm insert_not_empty} + val f = prove_finite cT (dest_set S) + in (ne, f) end - val qe = case (term_of L, term_of U) of - (Const (@{const_name Orderings.bot}, _),_) => - let - val (neU,fU) = proveneF U - in simp_rule ctxt (Thm.transitive ths (dlo_qeth_nolb OF [neU, fU])) end - | (_,Const (@{const_name Orderings.bot}, _)) => - let - val (neL,fL) = proveneF L - in simp_rule ctxt (Thm.transitive ths (dlo_qeth_noub OF [neL, fL])) end - - | (_,_) => - let - val (neL,fL) = proveneF L - val (neU,fU) = proveneF U - in simp_rule ctxt (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU])) - end - in qe end - | _ => error "dlo_qe : Not an existential formula"; + val qe = + (case (term_of L, term_of U) of + (Const (@{const_name Orderings.bot}, _),_) => + let val (neU, fU) = proveneF U + in simp_rule ctxt (Thm.transitive ths (dlo_qeth_nolb OF [neU, fU])) end + | (_, Const (@{const_name Orderings.bot}, _)) => + let val (neL,fL) = proveneF L + in simp_rule ctxt (Thm.transitive ths (dlo_qeth_noub OF [neL, fL])) end + | _ => + let + val (neL, fL) = proveneF L + val (neU, fU) = proveneF U + in simp_rule ctxt (Thm.transitive ths (dlo_qeth OF [neL, neU, fL, fU])) end) + in qe end + | _ => error "dlo_qe : Not an existential formula"); val all_conjuncts = - let fun h acc ct = - case term_of ct of - @{term HOL.conj}$_$_ => h (h acc (Thm.dest_arg ct)) (Thm.dest_arg1 ct) - | _ => ct::acc -in h [] end; + let + fun h acc ct = + (case term_of ct of + @{term HOL.conj} $ _ $ _ => h (h acc (Thm.dest_arg ct)) (Thm.dest_arg1 ct) + | _ => ct :: acc) + in h [] end; fun conjuncts ct = - case term_of ct of - @{term HOL.conj}$_$_ => (Thm.dest_arg1 ct)::(conjuncts (Thm.dest_arg ct)) -| _ => [ct]; + (case term_of ct of + @{term HOL.conj} $ _ $ _ => Thm.dest_arg1 ct :: conjuncts (Thm.dest_arg ct) + | _ => [ct]); -fun fold1 f = foldr1 (uncurry f); +fun fold1 f = foldr1 (uncurry f); (* FIXME !? *) -val list_conj = fold1 (fn c => fn c' => Thm.apply (Thm.apply @{cterm HOL.conj} c) c') ; +val list_conj = + fold1 (fn c => fn c' => Thm.apply (Thm.apply @{cterm HOL.conj} c) c'); fun mk_conj_tab th = - let fun h acc th = - case prop_of th of - @{term "Trueprop"}$(@{term HOL.conj}$p$q) => - h (h acc (th RS conjunct2)) (th RS conjunct1) - | @{term "Trueprop"}$p => (p,th)::acc -in fold (Termtab.insert Thm.eq_thm) (h [] th) Termtab.empty end; + let + fun h acc th = + (case prop_of th of + @{term "Trueprop"} $ (@{term HOL.conj} $ p $ q) => + h (h acc (th RS conjunct2)) (th RS conjunct1) + | @{term "Trueprop"} $ p => (p, th) :: acc) + in fold (Termtab.insert Thm.eq_thm) (h [] th) Termtab.empty end; fun is_conj (@{term HOL.conj}$_$_) = true | is_conj _ = false; fun prove_conj tab cjs = - case cjs of - [c] => if is_conj (term_of c) then prove_conj tab (conjuncts c) else tab c - | c::cs => conjI OF [prove_conj tab [c], prove_conj tab cs]; + (case cjs of + [c] => + if is_conj (term_of c) + then prove_conj tab (conjuncts c) + else tab c + | c :: cs => conjI OF [prove_conj tab [c], prove_conj tab cs]); fun conj_aci_rule eq = - let - val (l,r) = Thm.dest_equals eq - fun tabl c = the (Termtab.lookup (mk_conj_tab (Thm.assume l)) (term_of c)) - fun tabr c = the (Termtab.lookup (mk_conj_tab (Thm.assume r)) (term_of c)) - val ll = Thm.dest_arg l - val rr = Thm.dest_arg r + let + val (l, r) = Thm.dest_equals eq + fun tabl c = the (Termtab.lookup (mk_conj_tab (Thm.assume l)) (term_of c)) + fun tabr c = the (Termtab.lookup (mk_conj_tab (Thm.assume r)) (term_of c)) + val ll = Thm.dest_arg l + val rr = Thm.dest_arg r + val thl = prove_conj tabl (conjuncts rr) |> Drule.implies_intr_hyps + val thr = prove_conj tabr (conjuncts ll) |> Drule.implies_intr_hyps + val eqI = instantiate' [] [SOME ll, SOME rr] @{thm iffI} + in Thm.implies_elim (Thm.implies_elim eqI thl) thr |> mk_meta_eq end; - val thl = prove_conj tabl (conjuncts rr) - |> Drule.implies_intr_hyps - val thr = prove_conj tabr (conjuncts ll) - |> Drule.implies_intr_hyps - val eqI = instantiate' [] [SOME ll, SOME rr] @{thm iffI} - in Thm.implies_elim (Thm.implies_elim eqI thl) thr |> mk_meta_eq end; +fun contains x ct = + member (op aconv) (Misc_Legacy.term_frees (term_of ct)) (term_of x); -fun contains x ct = member (op aconv) (Misc_Legacy.term_frees (term_of ct)) (term_of x); - -fun is_eqx x eq = case term_of eq of - Const(@{const_name HOL.eq},_)$l$r => l aconv term_of x orelse r aconv term_of x - | _ => false ; +fun is_eqx x eq = + (case term_of eq of + Const (@{const_name HOL.eq}, _) $ l $ r => + l aconv term_of x orelse r aconv term_of x + | _ => false); local + fun proc ctxt ct = - case term_of ct of - Const(@{const_name Ex},_)$Abs (xn,_,_) => - let - val e = Thm.dest_fun ct - val (x,p) = Thm.dest_abs (SOME xn) (Thm.dest_arg ct) - val Pp = Thm.apply @{cterm "Trueprop"} p - val (eqs,neqs) = List.partition (is_eqx x) (all_conjuncts p) - in case eqs of - [] => - let - val (dx,ndx) = List.partition (contains x) neqs - in case ndx of [] => NONE - | _ => - conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp - (Thm.apply @{cterm Trueprop} (list_conj (ndx @dx)))) - |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e - |> Conv.fconv_rule (Conv.arg_conv - (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps}))) - |> SOME - end - | _ => conj_aci_rule (Thm.mk_binop @{cterm "op == :: prop => _"} Pp - (Thm.apply @{cterm Trueprop} (list_conj (eqs@neqs)))) - |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e - |> Conv.fconv_rule (Conv.arg_conv - (Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps}))) - |> SOME - end - | _ => NONE; -in val reduce_ex_simproc = + (case term_of ct of + Const (@{const_name Ex}, _) $ Abs (xn, _, _) => + let + val e = Thm.dest_fun ct + val (x,p) = Thm.dest_abs (SOME xn) (Thm.dest_arg ct) + val Pp = Thm.apply @{cterm Trueprop} p + val (eqs,neqs) = List.partition (is_eqx x) (all_conjuncts p) + in + (case eqs of + [] => + let + val (dx, ndx) = List.partition (contains x) neqs + in + case ndx of + [] => NONE + | _ => + conj_aci_rule (Thm.mk_binop @{cterm "op \ :: prop => _"} Pp + (Thm.apply @{cterm Trueprop} (list_conj (ndx @ dx)))) + |> Thm.abstract_rule xn x + |> Drule.arg_cong_rule e + |> Conv.fconv_rule + (Conv.arg_conv + (Simplifier.rewrite + (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps}))) + |> SOME + end + | _ => + conj_aci_rule (Thm.mk_binop @{cterm "op \ :: prop => _"} Pp + (Thm.apply @{cterm Trueprop} (list_conj (eqs @ neqs)))) + |> Thm.abstract_rule xn x |> Drule.arg_cong_rule e + |> Conv.fconv_rule + (Conv.arg_conv + (Simplifier.rewrite + (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms ex_simps}))) + |> SOME) + end + | _ => NONE); + +in + +val reduce_ex_simproc = Simplifier.make_simproc - {lhss = [@{cpat "EX x. ?P x"}] , name = "reduce_ex_simproc", - proc = K proc, identifier = []} + {lhss = [@{cpat "\x. ?P x"}], + name = "reduce_ex_simproc", + proc = K proc, + identifier = []}; + end; fun raw_dlo_conv ctxt dlo_ss ({qe_bnds, qe_nolb, qe_noub, gst, gs, ...}: Langford_Data.entry) = - let - val ctxt' = put_simpset dlo_ss ctxt addsimps @{thms "dnf_simps"} addsimprocs [reduce_ex_simproc] - val dnfex_conv = Simplifier.rewrite ctxt' - val pcv = - Simplifier.rewrite - (put_simpset dlo_ss ctxt - addsimps @{thms simp_thms ex_simps all_simps all_not_ex not_all ex_disj_distrib}) - in fn p => - Qelim.gen_qelim_conv pcv pcv dnfex_conv cons - (Thm.add_cterm_frees p []) (K Thm.reflexive) (K Thm.reflexive) - (K (basic_dloqe ctxt gst qe_bnds qe_nolb qe_noub gs)) p - end; - + let + val ctxt' = put_simpset dlo_ss ctxt addsimps @{thms dnf_simps} addsimprocs [reduce_ex_simproc] + val dnfex_conv = Simplifier.rewrite ctxt' + val pcv = + Simplifier.rewrite + (put_simpset dlo_ss ctxt + addsimps @{thms simp_thms ex_simps all_simps all_not_ex not_all ex_disj_distrib}) + in + fn p => + Qelim.gen_qelim_conv pcv pcv dnfex_conv cons + (Thm.add_cterm_frees p []) (K Thm.reflexive) (K Thm.reflexive) + (K (basic_dloqe ctxt gst qe_bnds qe_nolb qe_noub gs)) p + end; val grab_atom_bop = - let - fun h bounds tm = - (case term_of tm of - Const (@{const_name HOL.eq}, T) $ _ $ _ => - if domain_type T = HOLogic.boolT then find_args bounds tm - else Thm.dest_fun2 tm - | Const (@{const_name Not}, _) $ _ => h bounds (Thm.dest_arg tm) - | Const (@{const_name All}, _) $ _ => find_body bounds (Thm.dest_arg tm) - | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm) - | Const (@{const_name Ex}, _) $ _ => find_body bounds (Thm.dest_arg tm) - | Const (@{const_name HOL.conj}, _) $ _ $ _ => find_args bounds tm - | Const (@{const_name HOL.disj}, _) $ _ $ _ => find_args bounds tm - | Const (@{const_name HOL.implies}, _) $ _ $ _ => find_args bounds tm - | Const ("==>", _) $ _ $ _ => find_args bounds tm - | Const ("==", _) $ _ $ _ => find_args bounds tm - | Const (@{const_name Trueprop}, _) $ _ => h bounds (Thm.dest_arg tm) - | _ => Thm.dest_fun2 tm) - and find_args bounds tm = - (h bounds (Thm.dest_arg tm) handle CTERM _ => h bounds (Thm.dest_arg1 tm)) - and find_body bounds b = - let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b - in h (bounds + 1) b' end; -in h end; + let + fun h bounds tm = + (case term_of tm of + Const (@{const_name HOL.eq}, T) $ _ $ _ => + if domain_type T = HOLogic.boolT then find_args bounds tm + else Thm.dest_fun2 tm + | Const (@{const_name Not}, _) $ _ => h bounds (Thm.dest_arg tm) + | Const (@{const_name All}, _) $ _ => find_body bounds (Thm.dest_arg tm) + | Const ("all", _) $ _ => find_body bounds (Thm.dest_arg tm) + | Const (@{const_name Ex}, _) $ _ => find_body bounds (Thm.dest_arg tm) + | Const (@{const_name HOL.conj}, _) $ _ $ _ => find_args bounds tm + | Const (@{const_name HOL.disj}, _) $ _ $ _ => find_args bounds tm + | Const (@{const_name HOL.implies}, _) $ _ $ _ => find_args bounds tm + | Const ("==>", _) $ _ $ _ => find_args bounds tm + | Const ("==", _) $ _ $ _ => find_args bounds tm + | Const (@{const_name Trueprop}, _) $ _ => h bounds (Thm.dest_arg tm) + | _ => Thm.dest_fun2 tm) + and find_args bounds tm = + (h bounds (Thm.dest_arg tm) handle CTERM _ => h bounds (Thm.dest_arg1 tm)) + and find_body bounds b = + let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b + in h (bounds + 1) b' end; + in h end; fun dlo_instance ctxt tm = - (fst (Langford_Data.get ctxt), - Langford_Data.match ctxt (grab_atom_bop 0 tm)); + (fst (Langford_Data.get ctxt), Langford_Data.match ctxt (grab_atom_bop 0 tm)); fun dlo_conv ctxt tm = (case dlo_instance ctxt tm of @@ -210,28 +227,28 @@ | (ss, SOME instance) => raw_dlo_conv ctxt ss instance tm); fun generalize_tac f = CSUBGOAL (fn (p, _) => PRIMITIVE (fn st => - let - fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"} - fun gen x t = Thm.apply (all (ctyp_of_term x)) (Thm.lambda x t) - val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p) - val p' = fold_rev gen ts p - in Thm.implies_intr p' (Thm.implies_elim st (fold Thm.forall_elim ts (Thm.assume p'))) end)); - + let + fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"} + fun gen x t = Thm.apply (all (ctyp_of_term x)) (Thm.lambda x t) + val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p) + val p' = fold_rev gen ts p + in Thm.implies_intr p' (Thm.implies_elim st (fold Thm.forall_elim ts (Thm.assume p'))) end)); fun cfrees ats ct = - let - val ins = insert (op aconvc) - fun h acc t = - case (term_of t) of - _$_$_ => if member (op aconvc) ats (Thm.dest_fun2 t) - then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc) - else h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) - | _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) - | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc)) - | Free _ => if member (op aconvc) ats t then acc else ins t acc - | Var _ => if member (op aconvc) ats t then acc else ins t acc - | _ => acc - in h [] ct end + let + val ins = insert (op aconvc) + fun h acc t = + (case (term_of t) of + _ $ _ $ _ => + if member (op aconvc) ats (Thm.dest_fun2 t) + then ins (Thm.dest_arg t) (ins (Thm.dest_arg1 t) acc) + else h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) + | _ $ _ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) + | Abs _ => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc)) + | Free _ => if member (op aconvc) ats t then acc else ins t acc + | Var _ => if member (op aconvc) ats t then acc else ins t acc + | _ => acc) + in h [] ct end fun dlo_tac ctxt = CSUBGOAL (fn (p, i) => (case dlo_instance ctxt p of