# HG changeset patch # User huffman # Date 1315073438 25200 # Node ID b6d8b11ed399b8f574e8b5c02fce95bc3403d506 # Parent 49ef76b4a63491f2952f420e226225d10eb5e920 remove unused assumption from lemma posreal_complete diff -r 49ef76b4a634 -r b6d8b11ed399 src/HOL/Import/HOL4Compat.thy --- a/src/HOL/Import/HOL4Compat.thy Sat Sep 03 09:26:11 2011 -0700 +++ b/src/HOL/Import/HOL4Compat.thy Sat Sep 03 11:10:38 2011 -0700 @@ -421,16 +421,6 @@ assume allx': "ALL x. P x \ x < z" have "EX s. ALL y. (EX x : Collect P. y < x) = (y < s)" proof (rule posreal_complete) - show "ALL x : Collect P. 0 < x" - proof safe - fix x - assume P: "P x" - from allx - have "P x \ 0 < x" - .. - with P show "0 < x" by simp - qed - next from px show "EX x. x : Collect P" by auto diff -r 49ef76b4a634 -r b6d8b11ed399 src/HOL/RComplete.thy --- a/src/HOL/RComplete.thy Sat Sep 03 09:26:11 2011 -0700 +++ b/src/HOL/RComplete.thy Sat Sep 03 11:10:38 2011 -0700 @@ -33,8 +33,8 @@ text {* Only used in HOL/Import/HOL4Compat.thy; delete? *} lemma posreal_complete: - assumes positive_P: "\x \ P. (0::real) < x" - and not_empty_P: "\x. x \ P" + fixes P :: "real set" + assumes not_empty_P: "\x. x \ P" and upper_bound_Ex: "\y. \x \ P. xS. \y. (\x \ P. y < x) = (y < S)" proof -