# HG changeset patch # User haftmann # Date 1240926632 -7200 # Node ID b8a8cf6e16f212995db33a331b9dbbf2f616ed23 # Parent 2c227493ea566caaa81a371fbd94ead78014c08e stripped lemma duplicatesrc/HOL/Word/Num_Lemmas.thy diff -r 2c227493ea56 -r b8a8cf6e16f2 src/HOL/Word/Num_Lemmas.thy --- a/src/HOL/Word/Num_Lemmas.thy Tue Apr 28 15:50:30 2009 +0200 +++ b/src/HOL/Word/Num_Lemmas.thy Tue Apr 28 15:50:32 2009 +0200 @@ -45,10 +45,6 @@ apply (simp add: number_of_eq nat_diff_distrib [symmetric]) done -lemma of_int_power: - "of_int (a ^ n) = (of_int a ^ n :: 'a :: {recpower, comm_ring_1})" - by (induct n) (auto simp add: power_Suc) - lemma zless2: "0 < (2 :: int)" by arith lemmas zless2p [simp] = zless2 [THEN zero_less_power]