# HG changeset patch # User huffman # Date 1187722417 -7200 # Node ID b9718519f3d227394a2b2f261440d5b821d8293f # Parent 000327cea3eb2fd581b9dd3e73c0caea96777688 declare conj_absorb [simp] diff -r 000327cea3eb -r b9718519f3d2 src/HOL/Library/Boolean_Algebra.thy --- a/src/HOL/Library/Boolean_Algebra.thy Tue Aug 21 20:52:18 2007 +0200 +++ b/src/HOL/Library/Boolean_Algebra.thy Tue Aug 21 20:53:37 2007 +0200 @@ -81,7 +81,7 @@ subsection {* Conjunction *} -lemma conj_absorb: "x \ x = x" +lemma conj_absorb [simp]: "x \ x = x" proof - have "x \ x = (x \ x) \ \" using disj_zero_right by simp also have "... = (x \ x) \ (x \ \ x)" using conj_cancel_right by simp @@ -94,7 +94,7 @@ lemma conj_zero_right [simp]: "x \ \ = \" proof - have "x \ \ = x \ (x \ \ x)" using conj_cancel_right by simp - also have "... = (x \ x) \ \ x" using conj_assoc by simp + also have "... = (x \ x) \ \ x" using conj_assoc by (simp only:) also have "... = x \ \ x" using conj_absorb by simp also have "... = \" using conj_cancel_right by simp finally show ?thesis .