# HG changeset patch # User wenzelm # Date 1380031380 -7200 # Node ID b98c6cd902305bf34707085a3a8419b8cf642785 # Parent 73536e1193109fe93af99e383ec7a2a54144c3de tuned proofs; diff -r 73536e119310 -r b98c6cd90230 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Sep 24 14:14:49 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Sep 24 16:03:00 2013 +0200 @@ -2479,7 +2479,7 @@ and "(f has_integral k2) i" shows "k1 = k2" proof (rule ccontr) - let ?e = "norm(k1 - k2) / 2" + let ?e = "norm (k1 - k2) / 2" assume as:"k1 \ k2" then have e: "?e > 0" by auto @@ -5082,7 +5082,7 @@ and "\x\s. (f x)\k \ (g x)\k" shows "i\k \ j\k" proof - - have lem:"\a b i (j::'b). \g f::'a \ 'b. (f has_integral i) ({a..b}) \ + have lem: "\a b i j::'b. \g f::'a \ 'b. (f has_integral i) {a..b} \ (g has_integral j) ({a..b}) \ \x\{a..b}. (f x)\k \ (g x)\k \ i\k \ j\k" proof (rule ccontr) case goal1 @@ -7345,7 +7345,8 @@ by auto have same: "(x, k) = (x', k')" apply - - apply (rule ccontr,drule p(5)[OF xk xk']) + apply (rule ccontr) + apply (drule p(5)[OF xk xk']) proof - assume as: "interior k \ interior k' = {}" from nonempty_witness[OF *] guess z . @@ -8037,7 +8038,7 @@ using p(2-3)[OF goal1(1)] unfolding uv by auto have "u \ a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto - moreover assume "u \ a" + moreover assume "\ ?thesis" ultimately have "u > a" by auto then show False using p(2)[OF goal1(1)] unfolding uv by (auto simp add:) @@ -8061,7 +8062,7 @@ using p(2-3)[OF goal1(1)] unfolding uv by auto have "v \ b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto - moreover assume "v \ b" + moreover assume "\ ?thesis" ultimately have "v < b" by auto then show False using p(2)[OF goal1(1)] unfolding uv by (auto simp add:) @@ -8098,7 +8099,7 @@ apply auto done { assume "x \ k" then show "x \ k'" unfolding * . } - { assume "x \ k'" then show "x\k" unfolding * . } + { assume "x \ k'" then show "x \ k" unfolding * . } qed show "\x y. x \ ?B b \ y \ ?B b \ x = y" apply rule @@ -8473,7 +8474,7 @@ unfolding subset_eq apply (erule_tac x="c + ((k + w)/2)" in ballE) unfolding d_def - using `k>0` `w>0` + using `k > 0` `w > 0` apply (auto simp add: field_simps not_le not_less dist_real_def) done ultimately show ?thesis using `t < c` @@ -11788,7 +11789,7 @@ case goal2 have "\y\setsum (\k. norm (integral k f)) ` {d. d division_of \d}. \ y \ i - e" proof (rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i - e" apply - apply (rule isLub_le_isUb[OF i]) @@ -12451,7 +12452,7 @@ have "\y\?S. \ y \ i + r" proof(rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i + r" apply - apply (rule isGlb_le_isLb[OF i]) @@ -12554,7 +12555,7 @@ have "\y\?S. \ y \ i - r" proof (rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i - r" apply - apply (rule isLub_le_isUb[OF i]) diff -r 73536e119310 -r b98c6cd90230 src/HOL/Multivariate_Analysis/Linear_Algebra.thy --- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 24 14:14:49 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 24 16:03:00 2013 +0200 @@ -165,7 +165,7 @@ lemma norm_triangle_half_l: assumes "norm (x - y) < e / 2" - and "norm (x' - (y)) < e / 2" + and "norm (x' - y) < e / 2" shows "norm (x - x') < e" using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]] unfolding dist_norm[symmetric] . @@ -227,17 +227,17 @@ context real_inner begin -definition "orthogonal x y \ (x \ y = 0)" +definition "orthogonal x y \ x \ y = 0" lemma orthogonal_clauses: "orthogonal a 0" "orthogonal a x \ orthogonal a (c *\<^sub>R x)" - "orthogonal a x \ orthogonal a (-x)" + "orthogonal a x \ orthogonal a (- x)" "orthogonal a x \ orthogonal a y \ orthogonal a (x + y)" "orthogonal a x \ orthogonal a y \ orthogonal a (x - y)" "orthogonal 0 a" "orthogonal x a \ orthogonal (c *\<^sub>R x) a" - "orthogonal x a \ orthogonal (-x) a" + "orthogonal x a \ orthogonal (- x) a" "orthogonal x a \ orthogonal y a \ orthogonal (x + y) a" "orthogonal x a \ orthogonal y a \ orthogonal (x - y) a" unfolding orthogonal_def inner_add inner_diff by auto