# HG changeset patch # User obua # Date 1087215655 -7200 # Node ID b9ab8babd8b348a44f144315766b32bf60b62118 # Parent 29fe4a9a7cb5c0d6e1eee0f278a3517846020bf2 Further development of matrix theory diff -r 29fe4a9a7cb5 -r b9ab8babd8b3 src/HOL/Matrix/LinProg.thy --- a/src/HOL/Matrix/LinProg.thy Sun Jun 13 17:57:35 2004 +0200 +++ b/src/HOL/Matrix/LinProg.thy Mon Jun 14 14:20:55 2004 +0200 @@ -48,7 +48,7 @@ lemma linprog_by_duality_approx: assumes - "(A + dA) * x <= (b::('a::pordered_matrix_element) matrix)" + "(A + dA) * x <= (b::('a::lordered_ring) matrix)" "y * A = c" "0 <= y" shows @@ -56,17 +56,17 @@ apply (simp add: times_matrix_def plus_matrix_def) apply (rule linprog_by_duality_approx_general) apply (simp_all) -apply (simp_all add: associative_def matrix_add_assoc matrix_mult_assoc) -apply (simp_all add: commutative_def matrix_add_commute) -apply (simp_all add: distributive_def l_distributive_def r_distributive_def matrix_left_distrib matrix_right_distrib) +apply (simp_all add: associative_def add_assoc mult_assoc) +apply (simp_all add: commutative_def add_commute) +apply (simp_all add: distributive_def l_distributive_def r_distributive_def left_distrib right_distrib) apply (simp_all! add: plus_matrix_def times_matrix_def) -apply (simp add: pordered_add) -apply (simp add: pordered_mult_left) +apply (simp add: add_mono) +apply (simp add: mult_left_mono) done lemma linprog_by_duality: assumes - "A * x <= (b::('a::pordered_g_semiring) matrix)" + "A * x <= (b::('a::lordered_ring) matrix)" "y * A = c" "0 <= y" shows diff -r 29fe4a9a7cb5 -r b9ab8babd8b3 src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Sun Jun 13 17:57:35 2004 +0200 +++ b/src/HOL/Matrix/Matrix.thy Mon Jun 14 14:20:55 2004 +0200 @@ -1,201 +1,127 @@ (* Title: HOL/Matrix/Matrix.thy ID: $Id$ Author: Steven Obua - License: 2004 Technische Universität München *) -theory Matrix = MatrixGeneral: +theory Matrix=MatrixGeneral: + +instance matrix :: (minus) minus +by intro_classes + +instance matrix :: (plus) plus +by (intro_classes) -axclass almost_matrix_element < zero, plus, times -matrix_add_assoc: "(a+b)+c = a + (b+c)" -matrix_add_commute: "a+b = b+a" +instance matrix :: ("{plus,times}") times +by (intro_classes) + +defs (overloaded) + plus_matrix_def: "A + B == combine_matrix (op +) A B" + diff_matrix_def: "A - B == combine_matrix (op -) A B" + minus_matrix_def: "- A == apply_matrix uminus A" + times_matrix_def: "A * B == mult_matrix (op *) (op +) A B" + +lemma is_meet_combine_matrix_meet: "is_meet (combine_matrix meet)" +by (simp_all add: is_meet_def le_matrix_def meet_left_le meet_right_le meet_imp_le) -matrix_mult_assoc: "(a*b)*c = a*(b*c)" -matrix_mult_left_0[simp]: "0 * a = 0" -matrix_mult_right_0[simp]: "a * 0 = 0" - -matrix_left_distrib: "(a+b)*c = a*c+b*c" -matrix_right_distrib: "a*(b+c) = a*b+a*c" - -axclass matrix_element < almost_matrix_element -matrix_add_0[simp]: "0+0 = 0" - -instance matrix :: (plus) plus .. -instance matrix :: (times) times .. +instance matrix :: (lordered_ab_group) lordered_ab_group_meet +proof + fix A B C :: "('a::lordered_ab_group) matrix" + show "A + B + C = A + (B + C)" + apply (simp add: plus_matrix_def) + apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]) + apply (simp_all add: add_assoc) + done + show "A + B = B + A" + apply (simp add: plus_matrix_def) + apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]) + apply (simp_all add: add_commute) + done + show "0 + A = A" + apply (simp add: plus_matrix_def) + apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) + apply (simp) + done + show "- A + A = 0" + by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) + show "A - B = A + - B" + by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) + show "\m\'a matrix \ 'a matrix \ 'a matrix. is_meet m" + by (auto intro: is_meet_combine_matrix_meet) + assume "A <= B" + then show "C + A <= C + B" + apply (simp add: plus_matrix_def) + apply (rule le_left_combine_matrix) + apply (simp_all) + done +qed defs (overloaded) -plus_matrix_def: "A + B == combine_matrix (op +) A B" -times_matrix_def: "A * B == mult_matrix (op *) (op +) A B" + abs_matrix_def: "abs (A::('a::lordered_ab_group) matrix) == join A (- A)" -instance matrix :: (matrix_element) matrix_element -proof - - note combine_matrix_assoc2 = combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec] - { - fix A::"('a::matrix_element) matrix" - fix B - fix C - have "(A + B) + C = A + (B + C)" - apply (simp add: plus_matrix_def) - apply (rule combine_matrix_assoc2) - by (simp_all add: matrix_add_assoc) - } - note plus_assoc = this - { - fix A::"('a::matrix_element) matrix" - fix B - fix C - have "(A * B) * C = A * (B * C)" - apply (simp add: times_matrix_def) - apply (rule mult_matrix_assoc_simple) - apply (simp_all add: associative_def commutative_def distributive_def l_distributive_def r_distributive_def) - apply (auto) - apply (simp_all add: matrix_add_assoc) - apply (simp_all add: matrix_add_commute) - apply (simp_all add: matrix_mult_assoc) - by (simp_all add: matrix_left_distrib matrix_right_distrib) - } - note mult_assoc = this - note combine_matrix_commute2 = combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec] - { - fix A::"('a::matrix_element) matrix" - fix B - have "A + B = B + A" - apply (simp add: plus_matrix_def) - apply (insert combine_matrix_commute2[of "op +"]) - apply (rule combine_matrix_commute2) - by (simp add: matrix_add_commute) - } - note plus_commute = this - have plus_zero: "(0::('a::matrix_element) matrix) + 0 = 0" - apply (simp add: plus_matrix_def) - apply (rule combine_matrix_zero) - by (simp) - have mult_left_zero: "!! A. (0::('a::matrix_element) matrix) * A = 0" by(simp add: times_matrix_def) - have mult_right_zero: "!! A. A * (0::('a::matrix_element) matrix) = 0" by (simp add: times_matrix_def) - note l_distributive_matrix2 = l_distributive_matrix[simplified l_distributive_def matrix_left_distrib, THEN spec, THEN spec, THEN spec] - { - fix A::"('a::matrix_element) matrix" - fix B - fix C - have "(A + B) * C = A * C + B * C" - apply (simp add: plus_matrix_def) - apply (simp add: times_matrix_def) - apply (rule l_distributive_matrix2) - apply (simp_all add: associative_def commutative_def l_distributive_def) - apply (auto) - apply (simp_all add: matrix_add_assoc) - apply (simp_all add: matrix_add_commute) - by (simp_all add: matrix_left_distrib) - } - note left_distrib = this - note r_distributive_matrix2 = r_distributive_matrix[simplified r_distributive_def matrix_right_distrib, THEN spec, THEN spec, THEN spec] - { - fix A::"('a::matrix_element) matrix" - fix B - fix C - have "C * (A + B) = C * A + C * B" - apply (simp add: plus_matrix_def) - apply (simp add: times_matrix_def) - apply (rule r_distributive_matrix2) - apply (simp_all add: associative_def commutative_def r_distributive_def) - apply (auto) - apply (simp_all add: matrix_add_assoc) - apply (simp_all add: matrix_add_commute) - by (simp_all add: matrix_right_distrib) - } - note right_distrib = this - show "OFCLASS('a matrix, matrix_element_class)" - apply (intro_classes) - apply (simp_all add: plus_assoc) - apply (simp_all add: plus_commute) - apply (simp_all add: plus_zero) - apply (simp_all add: mult_assoc) - apply (simp_all add: mult_left_zero mult_right_zero) - by (simp_all add: left_distrib right_distrib) +instance matrix :: (lordered_ring) lordered_ring +proof + fix A B C :: "('a :: lordered_ring) matrix" + show "A * B * C = A * (B * C)" + apply (simp add: times_matrix_def) + apply (rule mult_matrix_assoc) + apply (simp_all add: associative_def ring_eq_simps) + done + show "(A + B) * C = A * C + B * C" + apply (simp add: times_matrix_def plus_matrix_def) + apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec]) + apply (simp_all add: associative_def commutative_def ring_eq_simps) + done + show "A * (B + C) = A * B + A * C" + apply (simp add: times_matrix_def plus_matrix_def) + apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec]) + apply (simp_all add: associative_def commutative_def ring_eq_simps) + done + show "abs A = join A (-A)" + by (simp add: abs_matrix_def) + assume a: "A \ B" + assume b: "0 \ C" + from a b show "C * A \ C * B" + apply (simp add: times_matrix_def) + apply (rule le_left_mult) + apply (simp_all add: add_mono mult_left_mono) + done + from a b show "A * C \ B * C" + apply (simp add: times_matrix_def) + apply (rule le_right_mult) + apply (simp_all add: add_mono mult_right_mono) + done qed -axclass g_almost_semiring < almost_matrix_element -g_add_left_0[simp]: "0 + a = a" - -lemma g_add_right_0[simp]: "(a::'a::g_almost_semiring) + 0 = a" -by (simp add: matrix_add_commute) - -axclass g_semiring < g_almost_semiring -g_add_leftimp_eq: "a+b = a+c \ b = c" - -instance g_almost_semiring < matrix_element - by intro_classes simp - -instance matrix :: (g_almost_semiring) g_almost_semiring -apply (intro_classes) -by (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def) +lemma Rep_matrix_add[simp]: "Rep_matrix ((a::('a::lordered_ab_group)matrix)+b) j i = (Rep_matrix a j i) + (Rep_matrix b j i)" +by (simp add: plus_matrix_def) -lemma RepAbs_matrix_eq_left: " Rep_matrix(Abs_matrix f) = g \ \m. \j i. m \ j \ f j i = 0 \ \n. \j i. n \ i \ f j i = 0 \ f = g" -by (simp add: RepAbs_matrix) - -lemma RepAbs_matrix_eq_right: "g = Rep_matrix(Abs_matrix f) \ \m. \j i. m \ j \ f j i = 0 \ \n. \j i. n \ i \ f j i = 0 \ g = f" -by (simp add: RepAbs_matrix) +lemma Rep_matrix_mult: "Rep_matrix ((a::('a::lordered_ring) matrix) * b) j i = + foldseq (op +) (% k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))" +apply (simp add: times_matrix_def) +apply (simp add: Rep_mult_matrix) +done + -instance matrix :: (g_semiring) g_semiring -apply (intro_classes) -apply (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def) -apply (subst Rep_matrix_inject[THEN sym]) -apply (drule ssubst[OF Rep_matrix_inject, of "% x. x"]) -apply (drule RepAbs_matrix_eq_left) -apply (auto) -apply (rule_tac x="max (nrows a) (nrows b)" in exI, simp add: nrows_le) -apply (rule_tac x="max (ncols a) (ncols b)" in exI, simp add: ncols_le) -apply (drule RepAbs_matrix_eq_right) -apply (rule_tac x="max (nrows a) (nrows c)" in exI, simp add: nrows_le) -apply (rule_tac x="max (ncols a) (ncols c)" in exI, simp add: ncols_le) +lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) \ f 0 = (0::'a) \ apply_matrix f ((a::('a::lordered_ab_group) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)" +apply (subst Rep_matrix_inject[symmetric]) apply (rule ext)+ -apply (drule_tac x="x" and y="x" in comb, simp) -apply (drule_tac x="xa" and y="xa" in comb, simp) -apply (drule g_add_leftimp_eq) -by simp - -axclass pordered_matrix_element < matrix_element, order, zero -pordered_add_right_mono: "a <= b \ a + c <= b + c" -pordered_mult_left: "0 <= c \ a <= b \ c*a <= c*b" -pordered_mult_right: "0 <= c \ a <= b \ a*c <= b*c" - -lemma pordered_add_left_mono: "(a::'a::pordered_matrix_element) <= b \ c + a <= c + b" -apply (insert pordered_add_right_mono[of a b c]) -by (simp add: matrix_add_commute) +apply (simp) +done -lemma pordered_add: "(a::'a::pordered_matrix_element) <= b \ (c::'a::pordered_matrix_element) <= d \ a+c <= b+d" -proof - - assume p1:"a <= b" - assume p2:"c <= d" - have "a+c <= b+c" by (rule pordered_add_right_mono) - also have "\ <= b+d" by (rule pordered_add_left_mono) - ultimately show "a+c <= b+d" by simp -qed +lemma singleton_matrix_add: "singleton_matrix j i ((a::_::lordered_ab_group)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (simp) +done -instance matrix :: (pordered_matrix_element) pordered_matrix_element -apply (intro_classes) -apply (simp_all add: plus_matrix_def times_matrix_def) -apply (rule le_combine_matrix) -apply (simp_all) -apply (simp_all add: pordered_add) -apply (rule le_left_mult) -apply (simp_all add: matrix_add_0 g_add_left_0 pordered_add pordered_mult_left matrix_mult_left_0 matrix_mult_right_0) -apply (rule le_right_mult) -by (simp_all add: pordered_add pordered_mult_right) - -axclass pordered_g_semiring < g_semiring, pordered_matrix_element - -instance matrix :: (pordered_g_semiring) pordered_g_semiring .. - -lemma nrows_mult: "nrows ((A::('a::matrix_element) matrix) * B) <= nrows A" +lemma nrows_mult: "nrows ((A::('a::lordered_ring) matrix) * B) <= nrows A" by (simp add: times_matrix_def mult_nrows) -lemma ncols_mult: "ncols ((A::('a::matrix_element) matrix) * B) <= ncols B" +lemma ncols_mult: "ncols ((A::('a::lordered_ring) matrix) * B) <= ncols B" by (simp add: times_matrix_def mult_ncols) -(* constdefs - one_matrix :: "nat \ ('a::comm_semiring_1_cancel) matrix" + one_matrix :: "nat \ ('a::{zero,one}) matrix" "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)" lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)" @@ -204,21 +130,21 @@ apply (rule exI[of _ n], simp add: split_if)+ by (simp add: split_if, arith) -lemma nrows_one_matrix[simp]: "nrows (one_matrix n) = n" (is "?r = _") +lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: nrows_le) - moreover have "n <= ?r" by (simp add: le_nrows, arith) + moreover have "n <= ?r" by (simp add:le_nrows, arith) ultimately show "?r = n" by simp qed -lemma ncols_one_matrix[simp]: "ncols (one_matrix n) = n" (is "?r = _") +lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: ncols_le) moreover have "n <= ?r" by (simp add: le_ncols, arith) ultimately show "?r = n" by simp qed -lemma one_matrix_mult_right: "ncols A <= n \ A * (one_matrix n) = A" +lemma one_matrix_mult_right[simp]: "ncols A <= n \ (A::('a::{lordered_ring,ring_1}) matrix) * (one_matrix n) = A" apply (subst Rep_matrix_inject[THEN sym]) apply (rule ext)+ apply (simp add: times_matrix_def Rep_mult_matrix) @@ -226,7 +152,7 @@ apply (simp_all) by (simp add: max_def ncols) -lemma one_matrix_mult_left: "nrows A <= n \ (one_matrix n) * A = A" +lemma one_matrix_mult_left[simp]: "nrows A <= n \ (one_matrix n) * A = (A::('a::{lordered_ring, ring_1}) matrix)" apply (subst Rep_matrix_inject[THEN sym]) apply (rule ext)+ apply (simp add: times_matrix_def Rep_mult_matrix) @@ -234,16 +160,131 @@ apply (simp_all) by (simp add: max_def nrows) -constdefs - right_inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \ 'a matrix \ bool" - "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X)))" - inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \ 'a matrix \ bool" - "inverse_matrix A X == (right_inverse_matrix A X) \ (right_inverse_matrix X A)" +lemma transpose_matrix_mult: "transpose_matrix ((A::('a::{lordered_ring,comm_ring}) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)" +apply (simp add: times_matrix_def) +apply (subst transpose_mult_matrix) +apply (simp_all add: mult_commute) +done + +lemma transpose_matrix_add: "transpose_matrix ((A::('a::lordered_ab_group) matrix)+B) = transpose_matrix A + transpose_matrix B" +by (simp add: plus_matrix_def transpose_combine_matrix) + +lemma transpose_matrix_diff: "transpose_matrix ((A::('a::lordered_ab_group) matrix)-B) = transpose_matrix A - transpose_matrix B" +by (simp add: diff_matrix_def transpose_combine_matrix) + +lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::lordered_ring) matrix)) = - transpose_matrix (A::('a::lordered_ring) matrix)" +by (simp add: minus_matrix_def transpose_apply_matrix) + +constdefs + right_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \ 'a matrix \ bool" + "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \ nrows X \ ncols A" + left_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \ 'a matrix \ bool" + "left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \ ncols X \ nrows A" + inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \ 'a matrix \ bool" + "inverse_matrix A X == (right_inverse_matrix A X) \ (left_inverse_matrix A X)" lemma right_inverse_matrix_dim: "right_inverse_matrix A X \ nrows A = ncols X" apply (insert ncols_mult[of A X], insert nrows_mult[of A X]) by (simp add: right_inverse_matrix_def) -text {* to be continued \dots *} -*) +lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \ ncols A = nrows Y" +apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A]) +by (simp add: left_inverse_matrix_def) + +lemma left_right_inverse_matrix_unique: + assumes "left_inverse_matrix A Y" "right_inverse_matrix A X" + shows "X = Y" +proof - + have "Y = Y * one_matrix (nrows A)" + apply (subst one_matrix_mult_right) + apply (insert prems) + by (simp_all add: left_inverse_matrix_def) + also have "\ = Y * (A * X)" + apply (insert prems) + apply (frule right_inverse_matrix_dim) + by (simp add: right_inverse_matrix_def) + also have "\ = (Y * A) * X" by (simp add: mult_assoc) + also have "\ = X" + apply (insert prems) + apply (frule left_inverse_matrix_dim) + apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left) + done + ultimately show "X = Y" by (simp) +qed + +lemma inverse_matrix_inject: "\ inverse_matrix A X; inverse_matrix A Y \ \ X = Y" + by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique) + +lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)" + by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def) + +lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 \ a * b = 0" +by auto + +lemma Rep_matrix_zero_imp_mult_zero: + "! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0 \ A * B = (0::('a::lordered_ring) matrix)" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero) +done + +lemma add_nrows: "nrows (A::('a::comm_monoid_add) matrix) <= u \ nrows B <= u \ nrows (A + B) <= u" +apply (simp add: plus_matrix_def) +apply (rule combine_nrows) +apply (simp_all) +done + +lemma move_matrix_row_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) j 0 = (move_matrix A j 0) * B" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (auto simp add: Rep_matrix_mult foldseq_zero) +apply (rule_tac foldseq_zerotail[symmetric]) +apply (auto simp add: nrows zero_imp_mult_zero max2) +apply (rule order_trans) +apply (rule ncols_move_matrix_le) +apply (simp add: max1) +done + +lemma move_matrix_col_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) 0 i = A * (move_matrix B 0 i)" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (auto simp add: Rep_matrix_mult foldseq_zero) +apply (rule_tac foldseq_zerotail[symmetric]) +apply (auto simp add: ncols zero_imp_mult_zero max1) +apply (rule order_trans) +apply (rule nrows_move_matrix_le) +apply (simp add: max2) +done + +lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::lordered_ab_group) matrix)) = (move_matrix A j i) + (move_matrix B j i)" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (simp) +done + +lemma move_matrix_mult: "move_matrix ((A::('a::lordered_ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)" +by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult) + +constdefs + scalar_mult :: "('a::lordered_ring) \ 'a matrix \ 'a matrix" + "scalar_mult a m == apply_matrix (op * a) m" + +lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" + by (simp add: scalar_mult_def) + +lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)" + by (simp add: scalar_mult_def apply_matrix_add ring_eq_simps) + +lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)" + by (simp add: scalar_mult_def) + +lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)" + apply (subst Rep_matrix_inject[symmetric]) + apply (rule ext)+ + apply (auto) + done + + + + end diff -r 29fe4a9a7cb5 -r b9ab8babd8b3 src/HOL/Matrix/MatrixGeneral.thy --- a/src/HOL/Matrix/MatrixGeneral.thy Sun Jun 13 17:57:35 2004 +0200 +++ b/src/HOL/Matrix/MatrixGeneral.thy Mon Jun 14 14:20:55 2004 +0200 @@ -1,7 +1,6 @@ (* Title: HOL/Matrix/MatrixGeneral.thy ID: $Id$ Author: Steven Obua - License: 2004 Technische Universitaet Muenchen *) theory MatrixGeneral = Main: @@ -99,6 +98,22 @@ ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A]) qed +lemma infmatrixforward: "(x::'a infmatrix) = y \ \ a b. x a b = y a b" by auto + +lemma transpose_infmatrix_inject: "(transpose_infmatrix A = transpose_infmatrix B) = (A = B)" +apply (auto) +apply (rule ext)+ +apply (simp add: transpose_infmatrix) +apply (drule infmatrixforward) +apply (simp) +done + +lemma transpose_matrix_inject: "(transpose_matrix A = transpose_matrix B) = (A = B)" +apply (simp add: transpose_matrix_def) +apply (subst Rep_matrix_inject[THEN sym])+ +apply (simp only: transpose_infmatrix_closed transpose_infmatrix_inject) +done + lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j" by (simp add: transpose_matrix_def) @@ -175,6 +190,16 @@ apply (drule_tac x="nrows A" in spec) by (simp add: nrows) +lemma nrows_notzero: "Rep_matrix A m n \ 0 \ m < nrows A" +apply (case_tac "nrows A <= m") +apply (simp_all add: nrows) +done + +lemma ncols_notzero: "Rep_matrix A m n \ 0 \ n < ncols A" +apply (case_tac "ncols A <= n") +apply (simp_all add: ncols) +done + lemma finite_natarray1: "finite {x. x < (n::nat)}" apply (induct n) apply (simp) @@ -768,6 +793,10 @@ show "ncols 0 = 0" by (rule a, subst ncols_le, simp) qed +lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \ zero_l_neutral (combine_matrix f)" + by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def) + + lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \ zero_r_neutral (combine_matrix f)" by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def) @@ -800,6 +829,12 @@ apply (simp add: combine_matrix_def combine_infmatrix_def) by (simp add: zero_matrix_def) +lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0" +apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix) +apply (subst Rep_matrix_inject[symmetric], (rule ext)+) +apply (simp add: RepAbs_matrix) +done + lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0" apply (simp add: apply_matrix_def apply_infmatrix_def) by (simp add: zero_matrix_def) @@ -828,6 +863,12 @@ apply (rule exI[of _ "Suc n"], simp+) by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+ +lemma apply_singleton_matrix[simp]: "f 0 = 0 \ apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (simp) +done + lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0" by (simp add: singleton_matrix_def zero_matrix_def) @@ -870,6 +911,11 @@ apply (rule exI[of _ "Suc i"], simp) by simp +lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a" +apply (subst Rep_matrix_inject[symmetric], (rule ext)+) +apply (simp) +done + lemma Rep_move_matrix[simp]: "Rep_matrix (move_matrix A y x) j i = (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" @@ -879,6 +925,33 @@ rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith, rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+ +lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A" +by (simp add: move_matrix_def) + +lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i" +apply (subst Rep_matrix_inject[symmetric]) +apply (rule ext)+ +apply (simp) +done + +lemma transpose_move_matrix[simp]: + "transpose_matrix (move_matrix A x y) = move_matrix (transpose_matrix A) y x" +apply (subst Rep_matrix_inject[symmetric], (rule ext)+) +apply (simp) +done + +lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i = + (if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))" + apply (subst Rep_matrix_inject[symmetric]) + apply (rule ext)+ + apply (case_tac "j + int u < 0") + apply (simp, arith) + apply (case_tac "i + int v < 0") + apply (simp add: neg_def, arith) + apply (simp add: neg_def) + apply arith + done + lemma Rep_take_columns[simp]: "Rep_matrix (take_columns A c) j i = (if i < c then (Rep_matrix A j i) else 0)" @@ -905,6 +978,16 @@ "Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)" by (simp add: row_of_matrix_def) +lemma column_of_matrix: "ncols A <= n \ column_of_matrix A n = 0" +apply (subst Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by (simp add: ncols) + +lemma row_of_matrix: "nrows A <= n \ row_of_matrix A n = 0" +apply (subst Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by (simp add: nrows) + lemma mult_matrix_singleton_right[simp]: assumes prems: "! x. fmul x 0 = 0" @@ -1052,6 +1135,18 @@ shows "ncols (mult_matrix fmul fadd A B) \ ncols B" by (simp add: mult_matrix_def mult_n_ncols prems) +lemma nrows_move_matrix_le: "nrows (move_matrix A j i) <= nat((int (nrows A)) + j)" + apply (auto simp add: nrows_le) + apply (rule nrows) + apply (arith) + done + +lemma ncols_move_matrix_le: "ncols (move_matrix A j i) <= nat((int (ncols A)) + i)" + apply (auto simp add: ncols_le) + apply (rule ncols) + apply (arith) + done + lemma mult_matrix_assoc: assumes prems: "! a. fmul1 0 a = 0" @@ -1183,6 +1278,16 @@ apply (rule ext)+ by (simp! add: Rep_mult_matrix max_ac) +lemma column_transpose_matrix: "column_of_matrix (transpose_matrix A) n = transpose_matrix (row_of_matrix A n)" +apply (simp add: Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by simp + +lemma take_columns_transpose_matrix: "take_columns (transpose_matrix A) n = transpose_matrix (take_rows A n)" +apply (simp add: Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by simp + instance matrix :: ("{ord, zero}") ord .. defs (overloaded) @@ -1224,8 +1329,7 @@ lemma le_left_combine_matrix: assumes "f 0 0 = 0" - "! a b c. 0 <= c & a <= b \ f c a <= f c b" - "0 <= C" + "! a b c. a <= b \ f c a <= f c b" "A <= B" shows "combine_matrix f C A <= combine_matrix f C B" @@ -1234,8 +1338,7 @@ lemma le_right_combine_matrix: assumes "f 0 0 = 0" - "! a b c. 0 <= c & a <= b \ f a c <= f b c" - "0 <= C" + "! a b c. a <= b \ f a c <= f b c" "A <= B" shows "combine_matrix f A C <= combine_matrix f B C" @@ -1258,7 +1361,7 @@ lemma le_left_mult: assumes "! a b c d. a <= b & c <= d \ fadd a c <= fadd b d" - "! c a b. 0 <= c & a <= b \ fmul c a <= fmul c b" + "! c a b. 0 <= c & a <= b \ fmul c a <= fmul c b" "! a. fmul 0 a = 0" "! a. fmul a 0 = 0" "fadd 0 0 = 0" @@ -1289,4 +1392,7 @@ apply (rule le_foldseq) by (auto) +lemma singleton_matrix_le[simp]: "(singleton_matrix j i a <= singleton_matrix j i b) = (a <= (b::_::order))" + by (auto simp add: le_matrix_def) + end diff -r 29fe4a9a7cb5 -r b9ab8babd8b3 src/HOL/Ring_and_Field.thy --- a/src/HOL/Ring_and_Field.thy Sun Jun 13 17:57:35 2004 +0200 +++ b/src/HOL/Ring_and_Field.thy Mon Jun 14 14:20:55 2004 +0200 @@ -27,6 +27,8 @@ axclass semiring_0 \ semiring, comm_monoid_add +axclass semiring_0_cancel \ semiring_0, cancel_ab_semigroup_add + axclass comm_semiring \ ab_semigroup_add, ab_semigroup_mult mult_commute: "a * b = b * a" distrib: "(a + b) * c = a * c + b * c" @@ -45,6 +47,10 @@ instance comm_semiring_0 \ semiring_0 .. +axclass comm_semiring_0_cancel \ comm_semiring_0, cancel_ab_semigroup_add + +instance comm_semiring_0_cancel \ semiring_0_cancel .. + axclass axclass_0_neq_1 \ zero, one zero_neq_one [simp]: "0 \ 1" @@ -57,20 +63,30 @@ axclass axclass_no_zero_divisors \ zero, times no_zero_divisors: "a \ 0 \ b \ 0 \ a * b \ 0" +axclass semiring_1_cancel \ semiring_1, cancel_ab_semigroup_add + +instance semiring_1_cancel \ semiring_0_cancel .. + axclass comm_semiring_1_cancel \ comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *) +instance comm_semiring_1_cancel \ semiring_1_cancel .. + +instance comm_semiring_1_cancel \ comm_semiring_0_cancel .. + axclass ring \ semiring, ab_group_add -instance ring \ semiring_0 .. +instance ring \ semiring_0_cancel .. axclass comm_ring \ comm_semiring_0, ab_group_add instance comm_ring \ ring .. -instance comm_ring \ comm_semiring_0 .. +instance comm_ring \ comm_semiring_0_cancel .. axclass ring_1 \ ring, semiring_1 +instance ring_1 \ semiring_1_cancel .. + axclass comm_ring_1 \ comm_ring, comm_semiring_1 (* previously ring *) instance comm_ring_1 \ ring_1 .. @@ -83,7 +99,7 @@ left_inverse [simp]: "a \ 0 ==> inverse a * a = 1" divide_inverse: "a / b = a * inverse b" -lemma mult_zero_left [simp]: "0 * a = (0::'a::{semiring_0, cancel_semigroup_add})" +lemma mult_zero_left [simp]: "0 * a = (0::'a::semiring_0_cancel)" proof - have "0*a + 0*a = 0*a + 0" by (simp add: left_distrib [symmetric]) @@ -91,7 +107,7 @@ by (simp only: add_left_cancel) qed -lemma mult_zero_right [simp]: "a * 0 = (0::'a::{semiring_0, cancel_semigroup_add})" +lemma mult_zero_right [simp]: "a * 0 = (0::'a::semiring_0_cancel)" proof - have "a*0 + a*0 = a*0 + 0" by (simp add: right_distrib [symmetric]) @@ -155,10 +171,14 @@ axclass pordered_cancel_semiring \ pordered_semiring, cancel_ab_semigroup_add +instance pordered_cancel_semiring \ semiring_0_cancel .. + axclass ordered_semiring_strict \ semiring_0, ordered_cancel_ab_semigroup_add mult_strict_left_mono: "a < b \ 0 < c \ c * a < c * b" mult_strict_right_mono: "a < b \ 0 < c \ a * c < b * c" +instance ordered_semiring_strict \ semiring_0_cancel .. + instance ordered_semiring_strict \ pordered_cancel_semiring apply intro_classes apply (case_tac "a < b & 0 < c") @@ -200,6 +220,10 @@ axclass lordered_ring \ pordered_ring, lordered_ab_group_abs +instance lordered_ring \ lordered_ab_group_meet .. + +instance lordered_ring \ lordered_ab_group_join .. + axclass axclass_abs_if \ minus, ord, zero abs_if: "abs a = (if (a < 0) then (-a) else a)"